Ví dụ 1: chứng minh: \(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2b^2c^2\) của phần BĐT Cô-si trên OLM
\(Taco:\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge2\sqrt{c^2a^2}=2|ca|\end{cases}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|a^2b^2c^2|=8a^2b^2c^2}\)
\(\left(vì:a^2+b^2;b^2+c^2;c^2+a^2;|ab|;|bc|;|ca|\text{ đều lớn hơn hoặc bằng 0}\right)\)