CMR: (20a +11b)chia hết cho 17 «»(83a-38b) chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)
=> 100a+55b chia hết cho 17
=>(83a + 38b) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.(20a+11b) chia hết cho 17 (như trên) (3)
Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)
b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7
=> 20a + 30b + 40c chia hết cho 7
=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7
Mà 7a chia hết cho 7 với mọi a thuộc N
28b chia hết cho 7 với mọi b thuộc N
7c chia hết cho 7 với mọi c thuộc N
=> 13a + 2b -3c chia hết cho 7
Vậy...
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
b, Gọi ƯCLN (6n+1;5n+1) = d ( d thuộc N sao )
=> 6n+1 và 5n+1 đều chia hết cho d
=> 5.(6n+1) và 6.(5n+1) đều chia hết cho d
=> 30n+5 và 30n+6 chia hết cho d
=> 30n+6 - (30n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN (6n+1;5n+1) = 1
=> ĐPCM
Tk mk nha
Lời giải:
$2a-5b+6c\vdots 17$
$\Leftrightarrow 2a-5b-17b+6c\vdots 17$
$\Leftrightarrow 2a-22b+6c\vdots 17$
$\Leftrightarrow 2(a-11b+3c)\vdots 17$
$\Leftrightarrow a-11b+3c\vdots 17$ (do $(2,17)=1$)
Ta có đpcm.
#)Giải :
Do 20a + 11b chia hết cho 17 => 5.( 20a + 11b )
=> 100a + 55b chia hết cho 17
=> ( 83a + 38b ) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.( 20a + 11b ) chia hết cho 17 ( nt ) (3)
từ (1), (2) và (3) => 83a + 38b chia hét cho 17 ( tính chất chia hết của một tổng )
#~Will~be~Pens~#
Bạn tham khảo tại link
https://olm.vn/hoi-dap/detail/5871464032.html
Hok tốt