K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

c, Gọi K là giao điểm của DG và IF

Vì D là giao điểm của 2 tiếp tuyến 

-=>\(AC\perp OD\)

=>ADO=CAB=FAE

=> tam giác ADO đồng dạng tam giác EAF

=> \(\frac{AD}{EA}=\frac{AO}{EF}\)

=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)

=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )

=> ABD=IFE

=> tứ giác KBEF nội tiếp 

=> FBK=90độ

=> \(GK\perp IF\)

Lại có \(IE\perp FG\),IE giao GK tại B

=> B là trực tâm của tam giác IFG

MÀ B cố định 

=> ĐPCM

). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  ; AC AB CB   cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F.  1)  Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2)  Gọi  M  là  một  điểm  bất  kì  trên  cung  lớn  BD   của  (O)  (M  khác  B  và  D).  Chứng  minh: . BMD OFD   3) ...
Đọc tiếp

). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  ; AC AB CB   cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F.  1)  Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2)  Gọi  M  là  một  điểm  bất  kì  trên  cung  lớn  BD   của  (O)  (M  khác  B  và  D).  Chứng  minh: . BMD OFD   3)  Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng độ dài đoạn OA. Tính giá trị của   ACAB. 4)  Gọi P là điểm thay đổi  trên đoạn thẳng AC, đường thẳng BP   cắt  (O) tại N. Hỏi khi P di chuyển trên AC thì tâm đường tròn ngoại tiếp tam giác CPN chạy trên đường nào? 

0
 Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  AC > AB,  CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F.  5)  Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6)  Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD   7)  Giả sử...
Đọc tiếp

 Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  AC > AB,  CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F.  5)  Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6)  Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD   7)  Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng đoạn OA. Tính giá trị của   ACAB. 8)  Gọi P  là điểm di động trên đoạn AC, đường thẳng BP  cắt đường tròn (O) tại N. Chứng minh rằng tâm của đường tròn ngoại tiếp tam giác CPN luôn nằm trên một đường thẳng cố định khi P thay đổi trên đoạn thẳng AC. 

0
13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)