100 + 99/2 + 98/3 + .......... 2/99 + 1/100 : 100/2 + 100/3 +.......+ 100/100+100/101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu
\(A=\frac{\frac{101.102}{2}}{50.1+1}\)
\(A=\frac{5151}{51}\)
\(A=101\)
Đặt A = 101+100+....+3+2+1
=> Số số hạng của A là: (101-1)+1 = 101 (số)
Tổng A là: (101+1) x 101 :2 = 5151
Đặt B = 101 -100+99 -98+97+...+3-2+1
=> 100 +98+....+1
=> Số số hạng: (100-1)+1 = 100 (số)
Tổng B là: (100 +1) x 100 :2 = 5050
Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
Có tất cả số số hạng là:
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng của các số đó là:
( 101 + 1 ) x 101 : 2 = 5151
Đáp số: 5151
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
Lời giải:
Xét tử số:
$101+100+99+98+...+3+2+1=(101+1).101:2=5151$
Xét mẫu số:
$101-100+99-98+...+3-2+1$
$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$
Vậy $A=\frac{5151}{51}=101$
Trả Lời:
Đặt vế đầu là A, vế sau là B
Tính A=100+99/2+98/3+...+2/99+1/100
A=1+(1+99/2)+(1+98/3)+...+(1+2/99)+(1+1/100)
A=101/101+101/2+101/3+...+101/99+101/100
A=101(1/2+1/3+...+1/100+1/101) (1)
Tính B=100/2+100/3+...+100/100+100/101
B=100(1/2+1/3+...+1/100+1/101) (2)
Từ (1)(2) suy ra:
A÷B=101(1/2+1/3+...+1/100+1/101)
÷100(1/2+1/3+...+1/100+1/101)
A÷B=101÷100=101/100
Cứ làm theo mình đi đúng đấy! 🎖🎖🎖