K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

A B C G M P N

a) tg ABC đều 

mà G là trọng tâm
=> AG,CG,BG là dg pg
thì có các tg AGB, AGC,BGC cân

=> AG=CG=BG

b) tg APN cân tại A(tự cm)

mà góc A(lớn ) = 60độ

=> tg APN đều => góc ANP=góc ACB

=>PN//BC(...)

CMT vs các tg MNC,PMB

c)tg MNC=tgPMB=tg PNA(M,N,P lần lượt là tđ của BC,AC,AB)

=> MN=PM=PN

=> tg PMN đều

a) Mình sử dụng luôn 3 đường trung tuyến của câu b nha bạn

Vì G là trọng tâm của \(\Delta ABC\) nên

\(GA=\frac{2}{3}AM;GB=\frac{2}{3}BN;GC=\frac{2}{3}CP\left(1\right)\)

\(\Delta ABC\) đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau

=> AM = BN = CP (2)

Từ (1), (2) => GA = GB = GC

b) Xét \(\Delta ABC\) có : PA = PB ; NA = NC

\(\Rightarrow\) PN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) PN // BC

Xét \(\Delta ABC\) có : PA = PB ; MB = MC

=> MP là đường trung bình của \(\Delta ABC\)

=> MP // AC

c) Vì \(\Delta ABC\) đều mà AM là tung tuyến => AM là phân giác

=> \(\widehat{BAM}=\widehat{MAC}=\frac{60^o}{2}=30^o\)

Có AN = MN => \(\Delta AMN\) cân tại N

=> \(\widehat{NMA}=\widehat{NAM}=30^o\) (1)

Có MP = PA => \(\Delta AMP\) cân tại P

\(\Rightarrow\widehat{PAM}=\widehat{PMA}=\frac{60^o}{2}=30^o\) (2)

Xét \(\Delta ABM\) vuông tại M có MP là đường trung tuyến ứng với cạnh huyền AB

=> MP = PA = PB

Xét \(\Delta AMC\) vuông tại M có MN là đường trung tuyến ứng với cạnh huyền AC

=> MN = NA = NC

mà NA = CP

=> PM = MN => \(\Delta PMN\) cân tại M (3)

Từ (1) và (2) và (3) => \(\Delta PMN\) đều

21 tháng 5 2019

mình chưa học đường trung bình ạ :((, có thể chỉ cách khác được không ạ ?

12 tháng 3 2021

Dễ thấy H là trực tâm của tam giác ABC.

a) Bỏ qua

b) Gọi T là trung điểm của HC.

Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.

TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra  MT // ON.

Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).

Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).

Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).

c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.