K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

\(A=\left|x+2\right|+\left|x-1\right|\)

a) Biểu thức A đã đưa về dạng thu gọn.

b) Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|x-1\right|\ge0\end{cases}}\Rightarrow A=0\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|x-1\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=1\end{cases}}\)(loại vì x khác nhau)

Vậy A không thề bằng 0.

c) Amin = 0 \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

26 tháng 6 2016

\(A=\left|x-1\right|+\left|x-2\right|\)

  • x<1: \(A=1-x+2-x=3-2x>3-2\cdot1=1\)(1)
  • 1<= x < 2: \(A=x-1+2-x=1\)(2)
  • x>=2: \(A=x-1+x-2=2x-3\ge2\cdot2-3=1\). Dấu "=" khi x = 2. (3)

Từ (1); (2); (3) => GTNN của A bằng 1 khi \(1\le x\le2\)

26 tháng 6 2016

Ta có Ix-1I \(\ge\) 0  và Ix-2I \(\ge\) 0

=> A= Ix-1I + Ix-2I \(\ge\) 0

=> Giá trị nhỏ nhất của A=0 khi x-1=0 => x=1

giải nhanh hộ mình cái

7 tháng 11 2018

khó vậy