Tìm GTNN của biểu thức: \(N=4x^2-4x-3|2x-1|+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|2x-3\right|+\frac{\left|4x-1\right|}{2}\Rightarrow2M=\left|4x-6\right|+\left|4x-1\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) . Dấu đẳng thức xảy ra khi a,b cùng dấu.
Được : \(2M=\left|6-4x\right|+\left|4x-1\right|\ge\left|6-4x+4x-1\right|=5\) \(\Rightarrow2M\ge5\)
\(\Rightarrow M\ge\frac{5}{2}\) . Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}6-4x\ge0\\4x-1\ge0\end{cases}\)\(\Leftrightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
Vậy Min M = \(\frac{5}{2}\Leftrightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
( 2x - 1 )2 + 2( 2x + 1 )( 4x2 - 2x + 1 ) - 4( 4x3 - 3 )
= 4x2 - 4x + 1 + 2( 8x3 + 1 ) - 16x3 + 12
= 4x2 - 4x + 13 + 16x3 + 2 - 16x3
= 4x2 - 4x + 15
= ( 4x2 - 4x + 1 ) + 14
= ( 2x - 1 )2 + 14 ≥ 14 ∀ x
Dấu "=" xảy ra khi x = 1/2
=> GTNN của biểu thức = 14 <=> x = 1/2
N = 4x^2 - 4x + 1 - 3/2x - 1/ + 2
=> N = ( 2x - 1 )^2 - 3/2x - 1/ + 2
=> N >= 2 với mọi x
N = 2 <=> ( 2x - 1 )^2 = 0
và 3/ 2x - 1/ = 0
<=> x = 1/2
Vậy min N = 2 <=> x = 1/2.
D = 2x2 - 4x + 3
= 2(x2 - 2x) + 3
= 2(x2 - 2x + 1) + 1
= 2(x - 1)2 + 1
Có 2(x - 1)2 \(\ge\)0 với mọi x
=> 2(x - 1)2 + 1 \(\ge\)1 với mọi x
=> D \(\ge\)1 với mọi x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
KL: Dmin = 1 <=> x = 1
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)