\(\frac{4}{2.4}\)\(+\frac{4}{4.6}\)\(+\frac{4}{6.8}\)\(+...+\frac{4}{2012.2014}\)\(+\frac{4}{2014.2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2.\frac{1007}{2016}\)
\(=\frac{2007}{1008}\)
giải:
4/2.4+4/4.6+4/6.8+...+4/2012.2014+4/2014.2016
=2.(2/2.4+2/4.6+2/6.8+...+2/2012.2014+2/2014.2016
=2.(1/2-1/4+1,4-1/6+1/6-1/8+...+1/2012-1/2014+1/2014-1/2016)
=2.(1/2-1/2016)
=2.1007/2016
=1007/1008
xong rùi đó
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2014}-\frac{1}{2016}\)\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
F = 2.(2/2.4 + 2/4.6 +......+ 2/2014.2016)
F = 2.(1/2 - 1/4 + 1/4 - 1/6 +.......+1/2014 - 1/2016)
F = 2.(1/2 - 1/2016)
F = 2 . 1007/2016
F = 2014/2016
Ủng hộ nhé!
\(b,\frac{10}{99}\)+\(\frac{11}{199}\)+\(\frac{12}{299}\).\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{-1}{6}\)
Đặt A= \(\frac{4}{2.4}\)+\(\frac{4}{4.6}\)+\(\frac{4}{6.8}\)+...+\(\frac{4}{2008.2010}\)
A= 2(\(\frac{2}{2.4}\)+\(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+...+\(\frac{2}{2008.2010}\))
A=2(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\))
A=2(\(\frac{1}{2}-\frac{1}{2010}\))
A=2.\(\frac{502}{1005}\)
A=\(\frac{1004}{1005}\)
Mình ko ghi lai đề nha
4/2.4/4+4/4.4/6+......+4/2008.4/2010=4/2.4/2010=4/1005
Mình ko bt đúng ko nữa nha
\(C=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2010}\right)\) \(;C=\frac{1}{2}.\frac{502}{1005}=\frac{251}{1005}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{1004.1005}\)
=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1004.1005}\right)\)
=\(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1004}-\frac{1}{1005}\right)\)
=\(2\left(1-\frac{1}{1005}\right)\)
=\(2.\frac{1004}{1005}\)
=\(\frac{2008}{1005}\)
P/s: Không biết đúng không nữa, làm đại ^.^
K = 4/2 - 4/4 + 4/4 - 4/6 + ....... + 4/2008 - 4/2010
K = 4/2 - 4/2010
K = 4016/2010 = 1/1003/1005
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
Có gì ko hiểu thì cứ hỏi mình nha :)
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.2\frac{2}{4}+2.2\frac{2}{4.6}+2.2\frac{2}{6.8}+...+2.2\frac{2}{2008.2010}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
\(\Rightarrow A=4\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{2008.2010}\right)\)
\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\right]\)
\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2010}\right)\right]\Rightarrow A=4\left(\frac{1}{2}.\frac{502}{1005}\right)\Rightarrow A=4.\frac{251}{1005}\Rightarrow A=\frac{1004}{1005}\)
\(B=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
\(\Rightarrow B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+....+\frac{1}{30.33}\)
\(\Rightarrow B=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+.....+\frac{1}{30}-\frac{1}{33}\right)\)
\(\Rightarrow B=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\Rightarrow B=\frac{1}{3}.\frac{10}{33}\Rightarrow B=\frac{10}{99}\)
=1/1x2+1/2x3+1/3x4+...+1/1006x1007+1/1007x1008
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/1006-1/1007+1/1007-1/1008
=1/1-1/1008
=1007/1008
~-~:33
=\(\frac{4}{2}-\frac{4}{4}+\frac{4}{4}-\frac{4}{6}+\frac{4}{6}+....+\frac{4}{2012}-\frac{4}{2014}+\frac{4}{2014}-\frac{4}{2016}\)
= \(\frac{4}{2}-\frac{4}{2016}\)
=\(\frac{1007}{504}\)
hok tốt