CHỨNG MINH
S=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
P=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+.......+\(\frac{1}{2^{20}}\)<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có:
1/12>1/13
1/12>1/14
1/12>1/15
=>1/12.3=1/4>1/13+1/14+1/15
1/60>1/61
1/60>1/62
1/60>1/63
=>1/60.3=1/20>1/61+1/62+1/63
=>1/5+1/4+1/20> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
=>1/2> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Ta có: \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{62}+\frac{1}{62}+\frac{1}{63}\right)\)
\(A=\frac{1}{5}+\frac{1}{15}.3+\frac{1}{63}.3\)
\(A=\frac{1}{5}+\frac{1}{5}+\frac{1}{21}\)
\(A=\frac{47}{105}\)
Mà: \(\frac{47}{105}< \frac{47}{94}=\frac{1}{2}\)
Nên \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
P = 1/2 + ....1/2^20
2P = 1 + 1/2^2 + 1/2^3+.... + 1/2^19
2P - P
P = 1-2/2^20
Suy ra P nhỏ hơn 1
= > Chứng tỏ P =.... nhỏ hơn 1 cái này cậu nhập câu hỏi lên google cũng thấy
S thì cậu làm tương tự như P là đc