K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Nếu x = 0 

=> 0. f(1) = 2. f(0)

=> 0 = 2 . f(0)

=> f(0) = 0 

=> x = 0

=> x = 0 là 1 nghiệm của đa thức f(x)                ( 1 )

Nếu x = - 2 

=> ( -2 ). f(- 1) = 0. f(- 2)

=> (-2 ). f(- 1 ) = 0

=> f(- 1) = 0 

=> x = -1

=> x = -1 là 1 nghiệm của đa thức f(x)              ( 2 )

Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1

7 tháng 5 2015

*Với x=0
=> x.f(x+1) = 0.f(1)=0
=(x+3) . f(x) = 3.f(0) =0
=> f(0)=0 thì 3.f(0)=0
=> 0 là nghiệm của đa thức f(x)
* Với x=-3
=> (x+3).f(x) = (-3+3). f(-3) = 0
=> -3.f(-2) =0
=> f(-2) = thì -3.f(-2) =0
=> -2 là nghiệm của đa thức f(x)
VẬY: Đa thức f(x) có ít nhất 2 nghiệm

đúng cái nha

20 tháng 1 2016

thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b

2 tháng 3 2022

giúp với

Đặt f(x)=0

=>(x-1)(x+2)=0

=>x=1 hoặc x=-2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

13 tháng 4 2022

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2022

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

Với x-1 ta có:

\(f\left(x\right)=a+b+c=0\)

Vậy x 1 nghiệm của đa thức f(x)