Cho đa thức f(x) thoả mãn: x.f(x + 1) = (x + 2).f(x).
CTR đa thức f(x) có ít nhất 2 nghiệm là 0 và -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Với x=0
=> x.f(x+1) = 0.f(1)=0
=(x+3) . f(x) = 3.f(0) =0
=> f(0)=0 thì 3.f(0)=0
=> 0 là nghiệm của đa thức f(x)
* Với x=-3
=> (x+3).f(x) = (-3+3). f(-3) = 0
=> -3.f(-2) =0
=> f(-2) = thì -3.f(-2) =0
=> -2 là nghiệm của đa thức f(x)
VẬY: Đa thức f(x) có ít nhất 2 nghiệm
đúng cái nha
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
Nếu x = 0
=> 0. f(1) = 2. f(0)
=> 0 = 2 . f(0)
=> f(0) = 0
=> x = 0
=> x = 0 là 1 nghiệm của đa thức f(x) ( 1 )
Nếu x = - 2
=> ( -2 ). f(- 1) = 0. f(- 2)
=> (-2 ). f(- 1 ) = 0
=> f(- 1) = 0
=> x = -1
=> x = -1 là 1 nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1