\(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\)
giải hẳn ra nhé 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không bày bn cách giải, nhưng sẽ gợi ý:
2 bài tương tự nhau, mẫu gấp nhau 3 lần nhé
Ta có: A=1/11+1/12+1/13+...+1/30
=(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)
\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)
\(\Rightarrow\)A<(1/10)*10+(1/20)*10
\(\Rightarrow\)A<1+1/2
\(\Rightarrow\)A<3/2<11/6
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6
A = 5 / 6 = 1 / 2 + 1 / 3
Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )
Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 > 1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3
Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6
GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
Ta sẽ lấy
\(1-\frac{1}{90}=\frac{89}{90}\)
Sau đó ta so sánh :
\(\frac{89}{90}>\frac{5}{6}\)
k mình nhé !!!
Nhân vô rồi chuyển dấu lên và nhóm nhân -1ra ngoài rồi trg ngoặc là dãy có quy luật giải dãy đó r nhân phá ngoặc
a) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}\)
\(A< 1-\frac{1}{45}< 1\)
\(A< 1\)
????????????
Đặt S =\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\)
3S = \(3\times\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
3S \(=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\)
3S - S \(=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
2S = \(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-...-\frac{1}{1458}-\frac{1}{4374}\)
2S = \(\frac{3}{2}-\frac{1}{4374}\)
2S = \(\frac{3280}{2187}\)
\(\Rightarrow S=\frac{3280}{2187}:2=\frac{4373}{8748}\)