K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ

a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

=>AC=AK và EC=EK

=>AE là trung trực của CK

b: Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB cân tại E

=>K là trung điểm của BC

c: EA=EB

EA>AC

=>EB>AC

a: Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB can tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

b: Xét ΔAEC vuông tại C và ΔBED vuông tại D có

EA=EB

góc AEC=góc BED

=>ΔAEC=ΔBED

=>EC=ED

=>AD=BC

16 tháng 5 2021

AK làm sao bằng KB được

6 tháng 3 2023

a) Xét ΔACE và ΔAKE có:

\(\widehat{ACE}=\widehat{AKE}=90^0\)

AE chung

\(\widehat{CAE}=\widehat{KAE}\) (AE là tia phân giác \(\widehat{BAC}\) mà K ϵ AB ⇒ AE là tia phân giác \(\widehat{KAC}\) )

⇒ ΔACE = ΔAKE (cạnh huyền - góc nhọn)

⇒ AC = AK (2 cạnh tương ứng)

b) Xét ΔABC có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\) (Tổng 3 góc trong tam giác)

\(60^0+\widehat{ABC}+90^0=180^0\)

\(150^0+\widehat{ABC}=180^0\)

\(\widehat{ABC}=180^0-150^0\)

\(\widehat{ABC}=30^0\)

\(\Rightarrow\widehat{KBE}\left(K\in AB,E\in BC\right)\)

\(\widehat{BAC}=60^0\Rightarrow\widehat{KAC}=60^0\left(K\in AB\right)\)

mà AE là tia phân giác \(\widehat{KAC}\) 

\(\Rightarrow\widehat{KAE}=\dfrac{\widehat{KAC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Rightarrow\widehat{KBE}=\widehat{KAE}=30^0\)

Vì ΔKEB và ΔKEA là hai tam giác vuông

⇒ \(\widehat{KEB}+\widehat{KBE}=\widehat{KEA}+\widehat{KAE}=90^0\) (Tổng hai góc nhọn trong tam giác vuông)

\(\Rightarrow\widehat{KEB}=\widehat{KEA}\)

Xét ΔKEB và ΔKEA có:

\(\widehat{BKE}=\widehat{AKE}=90^0\)

AK chung

\(\widehat{KEB}=\widehat{KEA}\)

⇒ ΔKEB = ΔKEA (cạnh góc vuông - góc nhọn kề) ⇒ KB = KA (hai cạnh tương ứng) mà CA = KA ⇒ CA = KB ⇒ CA + CA = KB + KA ⇒ 2AC = AB (đpcm) c) Ta có: \(\widehat{KAE}+\widehat{EAC}=\widehat{KAE}\) (hai góc kề nhau) \(30^0+\widehat{EAC}=60^0\) \(\widehat{EAC}=60^0-30^0\)

\(\widehat{EAC}=30^0\)

Vì ΔAEC là tam giác vuông

\(\widehat{AEC}+\widehat{EAC}=90^0\)

\(\widehat{AEC}+30^0=90^0\)

\(\widehat{AEC}=90^0-30^0=60^0\)

\(\Rightarrow\widehat{BKE}>\widehat{AEC}\left(90^0>60^0\right)\)

⇒ EB > AC (quan hệ góc cạnh tam giác)

2:

a: Xét ΔBAD vuông  tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE
góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

c: AD=DE
DE<DC

=>AD<DC
d: Xét ΔBFC co BA/AF=BE/EC

nên AE//CF

a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

Suy ra: AC=AK và EC=EK

=>AE là đường trung trực của CK

b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

hay EA=EB

7 tháng 4 2022

 Xét ΔACE \ và ΔAKE  ta có

cạnh AE chung

\(\widehat{EAC}=\widehat{EAK}\)

=> ΔACE=ΔAKE(c.h-g.n)

=> AC=AK và EC=EK (cặp cạnh - nhau tg ứng)

=>AE là đường trung trực của CK

 Xét ΔEAB ta có

\(\widehat{BAE}=\widehat{ABE}\)

=> ΔEAB cân tại E

=>EA=EB