Tìm số nguyên dương n thỏa mãn: 22n-1+ 4n+2=264
ai biết giúp mình nha
làm chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. n\(\in\)Z và n\(\ne\)-2
b.
-Khi n=0 thì A=\(\frac{3}{2}\)
-Khi n=-7 thì A=\(\frac{-3}{5}\)
Nếu thấy đúng thì k cho mình nhé
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Hok tốt !
Cho mình hỏi là tại sao các số a,b,c,d khi chia cho 2 hoặc 3 đều phải cùng số dư. Và để có g trị nhỏ nhất thì sao phải dư một
Bài đó sai đề bạn . abc=n^2-4n+4 phải là cba
kết quả là 675
Ta có : x2 - y2 = 45
=> x2 + xy - (y2 + xy) = 45
=> x(x + y) - y(x + y) = 45
=> (x - y)(x + y) = 45
Vì x ; y là số nguyên tố
=> \(x;y\inℕ^∗;x>y\left(\text{vì }x^2>y^2\text{ và }x>y\right)\Rightarrow\hept{\begin{cases}x-y\inℕ^∗\\x+y\inℕ^∗\end{cases}\left(x-y>x+y\right)}\)
Khi đó 45 = 15.3 = 9.5 = 1.45
Lập bảng xét các trường hợp :
x - y | 1 | 5 | 3 |
x + y | 45 | 9 | 15 |
x | 23 | 7(tm) | 9 |
y | 22 | 2(tm) | 6 |
Vậy x = 7 ; y = 2
Em kham khảo link này nhé.
Câu hỏi của 0o0kienlun0o0 - Toán lớp 6 - Học toán với OnlineMath
Bạn tth làm đúng em vô kham khảo nha
22n - 1 + 4n + 2 = 264
=> 22n : 2 + 22n + 4 = 264
=> 22n.1/2 + 22n.16 = 264
=> 22n.(1/2 + 16) = 264
=> 22n.33/2 = 264
=> 22n = 264 : 33/2
=> 22n = 16
=> 22n = 24
=> 2n = 4
=> n = 4 : 2 = 2