Cho tam giác ABC nhọn, AD vuông góc BC tại D. Xác định M, N sao cho AB là trung trực của DM; AC là trung trực của DN. Đoạn thẳng MN cắt AB avf AC lần lượt tại I và K, Chứng minh:
a) Tam giác AMN cân; tam giác BMA vuông
b) DA là phân giác của góc IDK
c) BK vuông góc AC; CI vuông góc AB
d) Trực tâm của tam giác ABC chính là giao điểm của 3 đường phân giác của tam giác IDK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn,+AD+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+t%E1%BA%A1i+D.+X%C3%A1c+%C4%91%E1%BB%8Bnh+I,+J+sao+cho+AB+l%C3%A0+trung+tr%E1%BB%A5c+c%E1%BB%A7a+DI;+AC+l%C3%A0+trung+tr%E1%BB%B1c+c%E1%BB%A7a+DJ;+IJ+c%E1%BA%AFt+AB,+AC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+L+v%C3%A0+K.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++Tam+gi%C3%A1c+AIJ+c%C3%A2n.DA+l%C3%A0+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+LDK.N%E1%BA%BFu+D+l%C3%A0+1+%C4%91i%E1%BB%83m+t%C3%B9y+%C3%BD+tr%C3%AAn+BC.+Ch%E1%BB%A9ng+minh+s%E1%BB%91+%C4%91o+g%C3%B3c+IAJ+kh%C3%B4ng+%C4%91%E1%BB%95i+v%C3%A0+v%E1%BB%8B+tr%C3%AD+D+tr%C3%AAn+BC+%C4%91%E1%BB%83+IJ+nh%E1%BB%8F+nh%E1%BA%A5t.&id=32357
Bạn xem ở link này nhé
a, xét tam giác ALI và tam giác ALD có : AL chung
DL = LI (gt)
^ALD = ^ALI = 90
=> tam giác ALI = tam giác ALD (2cgv)
=> AI = AD
tương tự cm được tam giác AKD = tam giác AKJ (2cgv) => AJ = AD
=> AI = AJ
=> tam giác AIJ cân tại A