Cho đường tròn ( O;R ) và dây CD cố định . Trên tia đối CD lấy điểm M . Qua M kẻ 2 tiếp tuyến MA và MB tới đường tròn ( A,B là tiếp điểm, A thuộc cung lớn CD . Gọi I là trung điểm của CD.
a ) chứng minh MA^2 = MC*MD
b) gọi H,P lần lượt là giao điểm của AB với MO,CD . Chứng minh tứ giác OHPI nội tiếp .
c) chứng minh tam giác MHC đồng dạng với tam giác MDO và MC*PD=MD*PC
d) kẻ dây DE của đường tròn ( O,R ) sao cho DE song song AB . Chứng minh C,H,E thẳng hàng .