Cho tam giác đều ABC, đường cao AH. Trên tia HC lấy D sao cho AH=DH. Trên nửa mặt phẳng ko chứa A bờ BD vẽ tia Dx sao cho\(\widehat{BDx}\)=15\(^o\).Dx cắt AB ở E. C/m EH=DH
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Chứng minh phản chứng nhé_._
Giả sử \(HD>HE\Rightarrow\widehat{HED}>\widehat{BDx}\Rightarrow\widehat{HED}>15^0\left(1\right)\)
Mặt khác:\(HD>HE\Rightarrow HA>HE\left(AH=DH\right)\Rightarrow\widehat{AEH}>\widehat{EAH}\Rightarrow\widehat{AEH}>\frac{60^0}{2}=30^0\left(2\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)
Từ (1);(2) suy ra \(\widehat{BED}>30^0+15^0\Rightarrow\widehat{BED}>45^0\Rightarrow\widehat{ABD}=\widehat{BED}+\widehat{BDE}>45^0+15^0=60^0\)(Trái với giả thiết)
Giả sử \(HD< HE\Rightarrow\widehat{HED}< \widehat{HDx}\Rightarrow\widehat{HED}< 15^0\left(3\right)\)
Mặt khác:\(HD< HE\Rightarrow HA< HE\left(HD=HA\right)\Rightarrow\widehat{AEH}< \frac{60^0}{2}\Rightarrow\widehat{AEH}< 30^0\left(4\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)
Từ (3);(4) suy ra \(\Rightarrow\widehat{BED}=\widehat{AEH}+\widehat{HED}< 15^0+30^0=45^0\Rightarrow\widehat{ABD}< \widehat{BED}+\widehat{BDE}=45^0+15^0=60^0\)(Trái với giả thiết)
Vậy HD=HE.
ko còn cách nào khác hả bn