Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của BH. Trên tia đối tia AB lấy điểm N sao cho AN=BM. Cmr: CN=CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
\(AB=AC\) ( Vì △ABC cân)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
BM=CN(gt)
Do đó : △ABC=△ACN\(\left(c.g.c\right)\)
b)Xét △vuoongAHB và △vuoongAKC có
AB=AC(vì △ABC cân)
\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)
⇒△AHB=△AKC ( cạnh huyền góc nhọn)
⇒AH=AK
a, Ta có : ^ABM = ^MBC - ^ABC (1)
^ACN = ^NCB - ^ACB (2)
Từ (1) ; (2) suy ra ^ABM = ^ACN
Xét tam giác ABM và tam giác ANC có :
^ABM = ^ANC ( cmt )
AB = AC ( gt )
MB = NC (gt)
Vậy tam giác ABM = tam giác ACN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
Xét tam giác AMN có : AN = AM
Vậy tam giác AMN là tam giác cân tại A
=> ^M = ^N (3)
b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4)
^ACK = ^ANC ( cùng phụ ^KCN ) (5)
Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK
=> ^HBM = ^KCN
Xét tam giác AHB và tam giác AKC ta có :
^ABH = ^ACK ( cmt )
AB = AC
^AHB = ^AKC = 900
Vậy tam giác AHB = tam giác AKC ( ch - gn )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có : ^HBM = ^OBC ( đối đỉnh )
^KCN = ^BCO ( đối đỉnh )
mà ^HBM = ^KCN (cmt)
Xét tam giác OBC có :
^OBC = ^OCB vậy tam giác OBC cân tại O
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó;ΔABM=ΔACN
Suy ra: \(\widehat{M}=\widehat{N}\)
Xét ΔEBM vuông tại E và ΔFCN vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔEBM=ΔFCN
Suy ra: \(\widehat{EBM}=\widehat{FCN}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
mà AB=AC
và HB=HC
nên A,H,I thẳng hàng
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).
Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)
Xét \(\Delta ABM\) và \(\Delta ACN:\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)
\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)
b) Xét \(\Delta ABH\) và \(\Delta ACK:\)
\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)
\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).
\(\Rightarrow\) AH = AK (2 cạnh tương ứng).
c) Xét \(\Delta AOH\) và \(\Delta AOK:\)
\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).
\(\Rightarrow\) OH = OK (2 cạnh tương ứng).
Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)
\(\Rightarrow\) OB = OC.
\(\Rightarrow\Delta OBC\) cân tại O.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
liên quan