\(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+.........+\frac{1}{2016\cdot2017}\)
giúp mk vs
thanks
ai trả lời nhanh nhất mk qa tick cho na!!!
<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\left(1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{38}-\frac{1}{38}+\frac{1}{39}\right)\)
= 1 + \(1+\frac{1}{39}=\frac{40}{39}\)
chỗ " 1 + " phía trước là bỏ
ngay chỗ dấu bằng thứ hai
A =
A = \(1-\frac{1}{2018}\)
A = \(\frac{2017}{2018}\)
Có :
2.B = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
2.B = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
2.B = \(1-\frac{1}{2017}\)
2.B = \(\frac{2016}{2017}\)
B = \(\frac{2016}{2017}:2=\frac{1008}{2017}\)
Có :
3.C = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2017.2020}\)
3.C = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2017}-\frac{1}{2020}\)
3.C = \(\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)
C = \(\frac{2019}{2020}:3=\frac{673}{2020}\)
=1-1/2+1/2-1/3+1/3-1/4+1*4-1/5+1/5+1/6=1-1/6=5/6
ok xong
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}=1-\frac{1}{2}+\)+.... \(+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)
Tính nhanh :
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(\frac{1}{1.2}+\frac{2}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\left(\frac{20}{20}-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}\)
\(=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}\)
\(=\frac{19}{10}\)
C=(1+1+1+...+1)+(1/1*3+1/2*4+1/3*5+...+1/2015*2017+1/2015*2017)
C=2015+(2/1*3+2/2*4+2/3*5+...+2/2015*2017+2/2015*2017):2
C=2015+(1-1/3+1/2-1/4+...+1/2015-1/2017+1/2015-1/2017):2
C=2015+(1+1/2-1/2016-1/2017+1/2015-1/2017)
cai nay thi ban tu tinh lay
nho k cho minh voi nhe
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+....+\frac{1}{47.48.49.50}\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}.\frac{6533}{39200}=\frac{6533}{117600}\)
ta thấy 1/(1*2)-1/(2*3)=1/3=2*1/(1*2*3)
do đó A=1/2*{[1/(1*2)-1/(2*3)+[1/(2*3)-1/(3*4)]+.....+[1/(48*49)-1/(49*50)]}
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+.....+1/(48*49)-1/(49*50)]
=1/2*[1/(1*2)-1/(49*50)]
=1/2*(1/2-1/2450)
=1/2*612/1225
=306/1225
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2016\cdot2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
= 1/1-1/2+1/2-1/3+1/3-............-1/2017
=1-1/2017
=2016/2017