Tìm x biết
\(\frac{x-1}{117}+\frac{x-2}{118}+\frac{x-3}{119}=\frac{x-4}{120}+\frac{x-5}{121}+\frac{x-6}{122}\)
mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)
=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)
Vậy x=12; y=30.
b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)
=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)
=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)
+) x-0,25=2,5
=> x=2,5+0,25
=> x=2,75
+) x-0,25=-2,5
=> x=-2,5+0,25
=> x=-2,25
Vậy x \(\in\){-2,25; 2,75}.
c. y=kx
=> -17=k.8
=> k=-17/8
Vậy hệ số tỉ lệ là -17/8.
a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=> x=12 ; y = 30
b) \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)
=> x-0,25 = 2,5 hoac: -2,5
=> x = 2,75 hoac x= -2,25
Vay: x la { 2,75 ; -2,25 }
c) Ti le gi vay ban.
Neu thuan thi he so ti le la: \(-\frac{17}{8}\)
Neu nghich thi he so ti le la : -136
nhiều bài quá mình chỉ làm được bài 1,3,4,5
bài 2 mình đang suy nghĩ
bạn có thể vào để hỏi bài !
a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:
\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)
\(=3y+xy-24x+4xy-5xy+24x\)
\(=3y\)
\(=\frac{3}{119}\)
b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)
\(=7-5\)
= 2
c) \(\frac{1}{2}-x=\frac{3}{4}\)
\(\Leftrightarrow\frac{2}{4}-x=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{2}{4}-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-1}{4}\)
b) \(\frac{4}{5}x=\frac{4}{7}\)
\(\Leftrightarrow x=\frac{4}{7}\div\frac{4}{5}\)
\(\Leftrightarrow x=\frac{4}{7}.\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{7}\)
Bài 1:
Thay \(x=\frac{4}{3};y=-1\)vào biểu thức A, ta được:
\(A=\frac{4}{3}\cdot\left[3\cdot\frac{4}{3}-\left(-1\right)\right]-\left(3\cdot\frac{4}{3}+1\right)\left(-1\right)\)
\(A=\frac{20}{3}+5=\frac{35}{3}\)
Vậy khi \(x=\frac{4}{3};y=-1\)thì A=\(\frac{35}{3}\)
\(B=3\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{8}{39}\)
\(B=\frac{352}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot\frac{713}{119}-\frac{8}{39}=-\frac{412}{1071}\)
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
Đặt \(x^2+1=a\)
\(\Rightarrow\frac{a}{120}+\frac{a+1}{119}+\frac{a+2}{118}=3\)
\(\Leftrightarrow21241a=2506200\)
\(\Leftrightarrow a=\frac{2506200}{21241}\)
\(\Rightarrow x=.....\)
\(\frac{x^2}{120}+\frac{x^2+1}{119}+\frac{x^2+2}{118}=3\)
\(\Leftrightarrow\frac{x^2}{120}+1+\frac{x^2+1}{119}+1+\frac{x^2+2}{118}+1=6\)
\(\Leftrightarrow\frac{x^2+120}{120}+\frac{x^2+120}{119}+\frac{x^2+120}{118}=6\)
\(\Leftrightarrow\left(x^2+120\right)\left(\frac{1}{120}+\frac{1}{119}+\frac{1}{118}\right)=6\)
\(\Leftrightarrow x^2+120=\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}}\)
\(\Leftrightarrow x^2=\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}}-1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}}-1}\\x=-\sqrt{\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}-1}}\end{cases}}\)
\(\Leftrightarrow\frac{x-1}{117}+1+\frac{x-2}{118}+1+\frac{x-3}{119}=\frac{x-4}{120}+1+\frac{x-5}{121}+1+\frac{x-6}{122}+1\)
\(\Leftrightarrow\frac{x+116}{117}+\frac{x+116}{118}+\frac{x+116}{119}-\frac{x+116}{120}-\frac{x+116}{121}-\frac{x+116}{122}=0\)
\(\Leftrightarrow\left(x+116\right)\left(\frac{1}{117}+\frac{1}{118}+\frac{1}{119}-\frac{1}{120}-\frac{1}{121}-\frac{1}{122}\right)=0\)
\(\Leftrightarrow x+116=0\Leftrightarrow x=-116\)
\(\frac{x-1}{117}+\frac{x-2}{118}+\frac{x-3}{119}=\frac{x-4}{120}+\frac{x-5}{121}+\frac{x-6}{122}\)
\(\Leftrightarrow\frac{x-1}{117}+1+\frac{x-2}{118}+1+\frac{x-3}{119}+1=\frac{x-4}{120}+1+\frac{x-5}{121}+1+\frac{x-6}{122}+1\)
\(\Leftrightarrow\frac{x+116}{117}+\frac{x+116}{118}+\frac{x+116}{119}-\frac{x+116}{120}-\frac{x+116}{121}-\frac{x+116}{122}=0\)
\(\Leftrightarrow\left(x+116\right)\left(\frac{1}{117}+\frac{1}{118}+\frac{1}{119}-\frac{1}{120}-\frac{1}{121}-\frac{1}{122}\right)=0\)
Vì \(\frac{1}{117}+\frac{1}{118}+\frac{1}{119}-\frac{1}{120}-\frac{1}{121}-\frac{1}{122}\ne0\)
Nên x + 116 = 0
<=> x = -116