a,\(\frac{x}{9}\)<\(\frac{7}{x}\)<\(\frac{x}{6}\);b,\(\frac{3}{y}\)<\(\frac{y}{7}\)<\(\frac{4}{y}\)
Mọi người tìm x,y giúp mình với và x,y phải là số nguyên dương nhé .Cảm ơn nhiều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)(1)
ĐKXĐ: \(\hept{\begin{cases}x+9\ne0\\x+10\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-9\\x\ne-10\end{cases}}}\)
(1)\(\Leftrightarrow\frac{9.\left(x+9\right)}{90}+\frac{10.\left(x+10\right)}{90}=\frac{9.\left(x+9\right)}{\left(x+9\right)\left(x+10\right)}+\frac{10.\left(x+10\right)}{\left(x+9\right)\left(x+10\right)}\)
\(\Leftrightarrow9.\left(x+9\right)+10.\left(x+10\right)=9.\left(x+9\right)+10.\left(x+10\right)\)
\(\Leftrightarrow9x+81+10x+100=9x+81+10x+100\)
\(\Leftrightarrow9x+10x-9x-10x=81+100-81-100\)
\(\Leftrightarrow0x=0\)
\(\Rightarrow x\in R\)trừ -9 và -10
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)
\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3^2\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(-1+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-x-3+x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(-\frac{3}{x+3}\right).\frac{x+3}{3x^2}\)
\(A=-x^2\)
a, \(\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):(\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}+3\right)})\)
\(=\frac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{2\sqrt{x}+4}\)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
câu b mình quên cách tính rồi sorry
a) \(\left(x+1\right)^2=64\Leftrightarrow\left|x+1\right|=8\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=8\\x+1=-8\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=7\\x=-9\end{array}\right.\)
b) \(\frac{9}{2.4}+\frac{9}{4.6}+...+\frac{9}{96.98}+\frac{9}{98.100}=\frac{9}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\right)\)
\(=\frac{9}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{9}{4}\left(1-\frac{1}{50}\right)=\frac{441}{200}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\\ =\left(\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\\ =\frac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\\ =\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\\ \)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
a. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)^2=2^4\)
\(\Leftrightarrow\left(x+1\right)=2^2\)
\(\Leftrightarrow\left(x+1\right)=4\)
\(\Leftrightarrow x=4-1=3\)
b. \(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
\(\Leftrightarrow x:\left(\frac{10}{2}-\frac{3}{2}\right)=\frac{0,4+0,2-0,18}{1,6+0,8-0,72}\)
\(\Leftrightarrow x:\frac{7}{2}=\frac{\frac{21}{50}}{\frac{42}{25}}\)
\(\Leftrightarrow x=\frac{\frac{21}{50}}{\frac{42}{25}}.\frac{7}{2}\Leftrightarrow x=\frac{1}{4}.\frac{7}{2}=\frac{7}{8}\)
a ) \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4-1\\x=-4-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Dấu " \(\orbr{\begin{cases}\\\end{cases}}\)là hoặc nha !!!
a. \(\frac{x}{9}< \frac{7}{x}\)=> \(x.x< 9.7\)
=> \(x^2< 63\)
\(\frac{7}{x}< \frac{x}{6}\)=> \(7.6< x.x\)
=> \(42< x^2\)
Vậy \(42< x^2< 63\)
=> \(x^2=49\)
=> \(x=7\)
b. \(\frac{3}{y}< \frac{y}{7}\)=> \(7.3< y.y\)
=> \(21< y^2\)
\(\frac{y}{7}< \frac{4}{y}\)=> \(y.y< 4.7\)
=> \(y^2< 28\)
Vậy \(21< y^2< 28\)
=> \(y^2=25\)
=> \(y=5\)
Đúng rồi cảm ơn bạn nhiều