Tìm số nguyên n sao cho P=n+2/n-7 đạt giá trị lớn nhất.Tìm giá trị lớn nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2M=\frac{12n-6}{4n-6}=\frac{3(4n-6)+12}{4n-6}=3+\frac{12}{4n-6}$
$=3+\frac{6}{2n-3}$
Để $M$ lớn nhất thì $\frac{6}{2n-3}$ lớn nhất.
Điều này xảy ra khi $2n-3$ là số nguyên dương nhỏ nhất
$\Rightarrow 2n-3=1$
$\Rightarrow n=2$.
\(\frac{10n-3}{4n-3}\)=\(\frac{10n-6+3}{5n-3-n}\)=\(\frac{2\left(5n-3\right)+3}{5n-3-n}\)=2+\(\frac{3}{5n-3-n}\)
vậy 10n-3/4n-3 lớn nhất khi \(\frac{3}{5n-3-n}\)lớn nhất
khi 5n-3-n bé nhất
5n-3-n=4n-3 bé nhất
4n-3 là số nguyên dương bé nhất =>4n-3=1
n=4
Ta có:
B
=
10
n
−
3
4
n
−
10
=
2
,
5
(
4
n
−
10
)
+
22
4
n
−
10
=
2
,
5
(
4
n
−
10
)
4
n
−
10
+
22
4
n
−
10
=
2
,
5
+
22
4
n
−
10
Vì n là số tự nhiên nên
B
=
2
,
5
+
22
4
n
−
10
đạt giá trị lớn nhất khi
22
4
n
−
10
đạt đạt giá trị lớn nhất.
Mà
22
4
n
−
10
đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.
+) Nếu 4n – 10 = 1 thì 4n = 11 hay
n
=
11
4
(loại)
+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)
Khi đó
B
=
2
,
5
+
22
2
=
13
,
5
Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3
\(A=\frac{n+10}{2n}\) có GTLN
<=> n + 10 có GTLN và 2n là số nguyên dương bé nhất
=> 2n = 2 (vì n là số tự nhiên)
=> n = 1
Khi đó \(A=\frac{1+10}{2.1}=\frac{11}{2}\)có GTLN <=> n = 1
\(B=\frac{10n-3}{4n-10}=\frac{10n-25}{4n-10}+\frac{22}{4n-10}=2,5+\frac{22}{4n+10}\)
B lớn nhất <=>\(\frac{22}{4n+10}\)là số dương lớn nhất<=>4n+10 nhỏ nhất mà 4n+10 phải khác 0 thì phân thức mới xác định<=>4n+10=1<=>n=-9/4
Khi đó B=2,5+22/1=2,5+22=24,5
Vậy n=-9/4 thì B đạt GTLN đó là 24,5
P=\(\frac{n+2}{n-7}\)=\(\frac{\left(n-7\right)+7+2}{n-7}\)= 1+\(\frac{9}{n-7}\)
-Nếu n = 7 thì P không tồn tại
-Nếu n > 7 => n - 7 > 0 =>\(\frac{9}{n-7}\)> 0 => P > 1
-Nếu n < 7 => n - 7 < 0 => \(\frac{9}{n-7}\)< 0 => P < 1
Do đó ta chọn giá trị lớn nhất của P khi n > 7
Mà n \(\varepsilon\)Z => n - 7 \(\varepsilon\)Z và n - 7 > 0
=> n - 7 là số nguyên dương lớn nhất
=> n - 7 = 1
=> n = 7 + 1
=> n = 8
-Thay n = 8 vào P ta có :
P = \(\frac{8+2}{8-7}\)= \(\frac{10}{1}\)= 10
Vậy với giá trị nguyên n = 8 thi P đạt giá trị lớn nhất là 10
Cám ơn bạn Đoan Duy Anh Đưc