cho biểu thức A=3/n-2
a) tìm các số nguyên n để biểu thức A là phân số
b)tìm các số nguyên n để A là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mik nhoa mik đag cần cảm ơn những câu hỏi của tất cả các bn nhiều
a) Ta có :
Để : \(A\text{=}\dfrac{n-2}{n+5}\) là phân số \(\Leftrightarrow A\text{=}mẫu\left(n+5\right)\ne0\)
\(\Leftrightarrow n\ne-5\)
Vậy để A là phân số \(\Leftrightarrow n\ne5\)
b) Ta có : \(A\text{=}\dfrac{n-2}{n+5}\text{=}\dfrac{n+5-7}{n+5}\text{=}\dfrac{n+5}{n+5}-\dfrac{7}{n+5}\text{=}1-\dfrac{7}{n+5}\)
Để : \(A\in Z\Leftrightarrow\dfrac{7}{n+5}\in Z\Leftrightarrow n+5\inƯ\left(7\right)\)
mà \(Ư\left(7\right)\text{=}\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(-4;-6;2;-12\right)\)
\(Vậy...\)
a) Để A là phân số thì n - 3 \(\ne\)0 => n \(\ne\)3
b) Để A là một số nguyên thì 5 \(⋮\)n - 3 => n - 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng :
n - 3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Vậy ...
a,Với \(n\in Z\)Ta có \(3\in Z;n+2\in Z\)
Do đó để \(A=\frac{3}{n+2}\)là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy với n thuộc Z và n khác -2 thì A là phân số
b;Để A nguyên \(\Leftrightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;-3;1;-5\right\}\)
Vậy.................................
P/s : thêm đk nữa bn ơi :)
a, -5/n-2 là phân số <=> n-2 khác 0<=> n khác 2 b,-5/n-2 nguyên <=> n-2 thuộc Ư(-5) <=> n-2 thuộc {-5;-1;1;5} <=> n thuộc {-3;1;3;7}
a, NẾu Để A là phân số thì
n - 2 khác 0 => n khác 2
VẬy các số nguyên n khác 2 thì biểu thức A là phân số
b, Để A = -5/n-2 ( mình cứ viết vậy chứ 5 và -5 chẳng khác gì )
LÀ số nguyên thì -5 chia hết cho n -2=> n - 2 thuộc ước -5
-5 có các ước nguyên là -1 ; 1 ; -5 ; 5
(+) n - 2 = -1 => n = 1
(+) n - 2 = 1 => n = 3
(+) n - 2 = -5 => n = -3
(+) n - 2 = 5 => n = 7
\(A=\frac{3}{n-2}\) la phan so khi \(n-2\ne0\Rightarrow n\ne2\)
\(A=\frac{3}{n-2}\inℤ\Leftrightarrow3⋮n-2\)
\(\Rightarrow n-2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(A=\frac{3}{n-2}\)
a) Để A là 1 phân số \(\Rightarrow n-2\ne0\Rightarrow n\ne2\)
b) Để A \(\inℤ\Rightarrow3⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
Để A = 3/n-2 là phân số thì n - 2 ≠ 0 => n ≠ 2 => n = { n ∈ N | n ≠ 2 }
Để 3/n-2 ∈ Z 3 ∈ B ( n - 2 ) <=> n - 2 ∈ Ư ( 3 ) = { - 6 ; - 1 ; 1 ; 3 }
=> n - 2 ∈ { - 6 ; - 1 ; 1 ; 3 }
=> n = { - 4 ; 1 ; 3 ; 5 }
b) Đề biểu thức A là một số nguyên thì ta có: 3 chia hết cho n-2
( bạn cứ giải theo trình tự như ƯC)
a ) Để A = \(\frac{3}{n-2}\) là phân số thì n - 2 ≠ 0 => n ≠ 2
b ) Để A = \(\frac{3}{n-2}\) là phân số lớn nhất khi n - 2 = 1 => n = 3