K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

A = (x^2 - 9)^2 + |y - 2| + 10

có (x^2 - 9)^2 > 0; |y - 2| >

=> (x^2 - 9)^2 + |y - 2| > 0

=> (x^2 - 9)^3 + |y - 2| + 10 > 10

=> A > 10

=> Min A = 10 

dấu = xảy ra khi :

(x^2 - 9)^2 = 0 và |y  - 2| = 0

=> x^2 - 9 = 0 và y - 2 = 0

=> x^2 = 9 và y = 2

=> x = + 3 và y = 2

nhận thấy : (x^2-9)^2 >=0

|y-2|>=0

=> biểu thức (x^2-9)+|y-2|>=0

=>(x^2-9)+|y-2|+10>=10

=>GTNN của biểu thức là 10 khi 

(x^2-9)^2=0<=>x^2-9=0<=>x=+-3

|y-2|=0 <=> y=2

Vậy giá trị nhỏ nhất của biểu thức là 10 khi x=3 ;y=2 và x=-3 và y=2

13 tháng 7 2021

Ta có: 

K = x2 + y2 - 6x + y + 10

K = (x2 - 6x + 9) + (y2 + y + 1/4) + 3/4

K = (x - 3)2 + (y + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x; y (vì (x - 3)2 \(\ge\)0 và (y + 1/2)2 \(\ge\)0)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}x-3=0\\y+\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=-\frac{1}{2}\end{cases}}\)

Vậy MinK = 3/4 <=> x = 3 và y = -1/2

13 tháng 7 2021

Ta có C = x2 - 4x + y2 - y + 5 

\(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)

\(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

=> Min C = 3/4

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy Min C = 3/4 <=> x = 2 ; y = 1/2 

13 tháng 7 2021

C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4

= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y 

Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4

13 tháng 7 2021

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

12 tháng 3 2016

MỚI HỌC LỚP 5, KO CÓ HIỂU

12 tháng 3 2016

a) ?A = 5x2 - 1

  Vì x2 \(\ge\) 0 nên 5x2 \(\ge\) 0.

 Dấu ''='' xảy ra khi và chỉ khi x = 0.

 Khi đó minA = -1

Vậy minA = -1 \(\Leftrightarrow\) x = 0

27 tháng 7 2021

1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN biểu thức trên là 2 khi x = 1/2 

2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)

Dấu ''='' xảy ra khi x = 5 

Vậy GTLN biểu thức trên là -5 khi x = 5

3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xayr ra khi x = 1/2 

Vậy GTNN biểu thức là 3/4 khi x = 1/2 

4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1/5

Vậy GTNN biểu thức trên là -1 khi x = -1/5

6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)

\(=-\left(x-4\right)^2+21\le21\)

Dấu ''='' xảy ra khi x = 4

Vậy GTLN biểu thức trên là 21 khi x = 4

27 tháng 7 2021

Trả lời:

1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2

Vậy GTNN của bt = 2 khi x = 1/2

2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)

\(=-\left(x-5\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5

Vậy GTLN của bt = - 5 khi x = 5

3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5 

Vậy GTNN của bt = - 1 khi x = - 1/5

4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTNN của bt = 3/4 khi x = 1/2

5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)

\(=-\left(x-4\right)^2+21\le21\forall x\)

Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4

Vậy GTLN của bt = 21 khi x = 4