K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

1 )Ta có

\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)

\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)

\(=-\dfrac{101}{200}< \dfrac{1}{2}\)

2 ) Số phân số của biểu thức B là 180 phân số

Ta có

\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)

a: =>4y+15/16=1

=>4y=1/16

hay y=1/64

b: =>10y+1023/1024=1

=>10y=1/1024

hay  y=1/10240

23 tháng 9 2021

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{19}\right)\left(1-\dfrac{1}{20}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{18}{19}.\dfrac{19}{20}=\dfrac{1}{20}>\dfrac{1}{21}\)

30 tháng 11 2021

2: \(=\dfrac{203}{60}\cdot\dfrac{81}{1225}=\dfrac{783}{3500}\)

a) Ta có: \(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=2\sqrt{5}-6\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=-4\sqrt{5}+15\sqrt{2}\)

b) Ta có: \(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)

\(=4\left(\sqrt{3}-1\right)+2\cdot2\sqrt{3}+\dfrac{4}{\sqrt{2}}\)

\(=4\sqrt{3}-4+4\sqrt{3}+2\sqrt{2}\)

\(=8\sqrt{3}+2\sqrt{2}-4\)

c) Ta có: \(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)

=9-3

=6

d) Ta có: \(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)

\(=2-\sqrt{3}+2+\sqrt{3}\)

=4

27 tháng 5 2017

\(A=\left[\dfrac{1}{100}-1^2\right].\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right].\left[\dfrac{1}{100}-\left(\dfrac{1}{3}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{20}\right)^2\right]\)\(=\left[\dfrac{1}{100}-1^2\right].\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right].\left[\dfrac{1}{100}-\left(\dfrac{1}{3}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{10}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{20}\right)^2\right]\)\(\dfrac{1}{100}-\left(\dfrac{1}{10}\right)^2=\dfrac{1}{100}-\dfrac{1}{100}=0\)

\(\Rightarrow A=0\)

27 tháng 5 2017

\(\left(\dfrac{1}{100}-1^2\right)\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{20}\right)^2\right]\)

\(=\left(\dfrac{1}{100}-1^2\right)\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{10}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{20}\right)^2\right]\)

\(=\left(\dfrac{1}{100}-1^2\right)\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right]...0...\left[\dfrac{1}{100}-\left(\dfrac{1}{20}\right)^2\right]\)

\(=0\)

Vậy...

20 tháng 12 2021

Bài 2: 

a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)