Cho \(A=\frac{10^{2004}+1}{10^{2005}+1}\)và \(B=\frac{10^{2005}+1}{10^{2006}+1}\)
Hãy so sánh A và B
giúp mik giải toán ik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10A=\(\frac{10x\left(10^{2004}+1\right)}{10^{2005}+1}\)=
Ta có:10A=\(\frac{10^{2005}+10}{10^{2005}+1}\)=1+\(\frac{9}{10^{2005}+1}\)
10B=\(\frac{10^{2006}+10}{10^{2006}+1}\) =1+\(\frac{9}{10^{2006}+1}\)
Mà:\(\frac{9}{10^{2005}+1}\) >\(\frac{9}{10^{2006}+1}\)
Vậy:1+\(\frac{9}{10^{2005}+1}\) >1+\(\frac{9}{10^{2006}+1}\)
Vậy:A>B
cho
GIAI GIUP MINH DI
A=\(\frac{37^{2018}+5}{37^{2019}+5}\)
B=\(\frac{37^{2018}+1}{37^{2019}+1}\)
Ta có B= 102005+1 /102006+1
=102004*10+1/102005*10+1
=102004+1/102005+1
Vậy A=B
\(B=\frac{10^{2005}+1}{10^{2006}+1}<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10\left(10^{2004}+1\right)}{10\left(10^{2005}+1\right)}=\frac{10^{2004}+1}{10^{2005}+1}=A\)
\(\Rightarrow\)B < A
Bạn có thể tham khảo ở đây :
Câu hỏi của Vân Trang Bùi - Toán lớp 6 | Học trực tuyến
a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)
Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)
Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=> 10A > 10B
=> A > B
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\)
=> A < B
\(\Leftrightarrow10A=\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}\)
\(\Rightarrow10A=\frac{10^{2005}+10}{10^{2005}+1}\)
\(10A=\frac{10^{2005}+1+9}{10^{2005}+1}=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)
\(10A=1+\frac{9}{10^{2005}+1}\)
tương tự như trên ta có :
\(10B=1+\frac{9}{10^{2006}+1}\)
ta thấy:102005+1<102006+1
\(\Rightarrow\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\)
\(\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=>10A>10B
=>A>B
kl: vậy A>B
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Ta có: \(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=10.\frac{10^{2004}+1}{10^{2005}+1}\)
\(=\frac{10^{2005}+10}{10^{2005}+1}\)
\(=\frac{10^{2005}+1+9}{10^{2005}+1}\)
\(=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)
\(=1+\frac{9}{10^{2005}+1}\)
Tương tự ta có: \(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=10.\frac{10^{2005}+1}{10^{2006}+1}\)
\(=\frac{10^{2006}+10}{10^{2006}+1}\)
\(=\frac{10^{2006}+1+9}{10^{2006}+1}\)
\(=\frac{10^{2006}+1}{10^{2006}+1}+\frac{9}{10^{2006}+1}\)
\(=1+\frac{9}{10^{2006}+1}\)
Vì\(1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
(Muốn so sánh 2 phân số cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn, phân số nào có mẫu nhỏ hơn thì lớn hơn)
Nên\(A>B\)