Cho \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{11}\) . Tính giá trị của \(A=\dfrac{y+z-x}{x+z-y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)
Lời giải:
\(A=\left(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}\right)\left(\frac{1}{y-z}+\frac{1}{z-x}+\frac{1}{x-y}\right)-\frac{x}{(y-z)(z-x)}-\frac{x}{(y-z)(x-y)}-\frac{y}{(z-x)(x-y)}-\frac{y}{(z-x)(y-z)}-\frac{z}{(x-y)(y-z)}-\frac{z}{(x-y)(z-x)}\)
\(=0-\frac{x(x-y)+x(z-x)+y(y-z)+y(x-y)+z(z-x)+z(y-z)}{(x-y)(y-z)(z-x)}\)
\(=0-\frac{x^2+xz+y^2+xy+z^2+zy-(xy+x^2+yz+y^2+zx+z^2)}{(x-y)(y-z)(z-x)}=0-\frac{0}{(x-y)(y-z)(z-x)}=0\)
\(25P=\dfrac{x\left(2+3\right)^2}{2x+x+y+z}+\dfrac{y\left(2+3\right)^2}{2y+x+y+z}+\dfrac{z\left(2+3\right)^2}{2z+x+y+z}\)
\(25P\le x\left(\dfrac{2^2}{2x}+\dfrac{3^2}{x+y+z}\right)+y\left(\dfrac{2^2}{2y}+\dfrac{3^2}{x+y+z}\right)+z\left(\dfrac{2^2}{2z}+\dfrac{3^2}{x+y+z}\right)\)
\(25P\le6+\dfrac{9\left(x+y+z\right)}{x+y+z}=15\)
\(\Rightarrow P\le\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(x=y=z\)
TH1: \(x+y+z+t\ne0\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\
\Rightarrow x=y=z=t\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)
TH1: \(x+y+z+t=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x}{3}=k\\\dfrac{y}{4}=k\\\dfrac{z}{11}=k\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=11k\end{matrix}\right.\)
Ta có: \(A=\dfrac{y+z-x}{x+z-y}\)
\(=\dfrac{4k+11k-3k}{3k+11k-4k}\)
\(=\dfrac{12k}{10k}=\dfrac{6}{5}\)
em cảm ơn ạ