K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

ΔBDC nội tiếp đường tròn(B,D,C∈(O))

BC là đường kính(gt)

Do đó: ΔBDC vuông tại D(Định lí)

⇔CD⊥BD tại D

⇔CD⊥AB tại D

\(\widehat{ADC}=90^0\)

hay \(\widehat{ADH}=90^0\)

Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇔BE⊥CE tại E

⇔BE⊥AC tại E

\(\widehat{AEB}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét tứ giác ADHE có 

\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét ΔABE vuông tại E và ΔACD vuông tại D có 

\(\widehat{BAE}\) chung

Do đó: ΔABE∼ΔACD(g-g)

\(\dfrac{AB}{AC}=\dfrac{AE}{AD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB\cdot AD=AC\cdot AE\)(đpcm)

21 tháng 12 2021

b: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=AC+BD

21 tháng 12 2021

b: Xét (O) có

CA là tiếp tuyến

CM là tiếp tuyến

Do đó: CA=CM

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=AC+BD

25 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBM cân nên ∠ M 2 = ∠ B 2 . Suy ra  ∠ M 1 + ∠ M 2 = ∠ B 1 + ∠ B 2 = 90 ° , tức là ME ⊥ OM tại M. Vậy ME là tiếp tuyến của nửa đường tròn.