Cho 5 số nguyên dương đôi 1 khác nhau . Sao cho chúng chỉ có các ước nguyên tố là 17 và 19 . CMR ta luôn tìm được 2 trong 5 số mà tích của chúng là 1 số chính phương ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có :
K1 = 2^(a1).3^(b1)
K2 = 2^(a2).3^(b2)
K3 = 2^(a3).3^(b3)
K4 = 2^(a4).3^(b4)
K5 = 2^(a5).3^(b5)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau :
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj)
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương.
Cách 1:
Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.
(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.
Cách 2:
Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.
Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.
\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)
\(\text{TH1 : z = 0}\)
\(\Rightarrow2016^0+2017^y=2018^x\)
\(\Rightarrow1+2017^y=2018^x\)
\(\Rightarrow y=1;x=1\)
\(\text{TH2 : y = 0 }\)
\(\Rightarrow2016^z+2017^0=2018^x\)
\(\Rightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ khi x }\ge1\)
\(\text{Vế phải là số chẵn khi x }\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Rightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)
Giả sử bốn số nguyên tố đó là \(p_1,p_2,p_3,p_4\).
Khi đó các số đã cho đều viết được dưới dạng \(p_1^{a_1}p_2^{a_2}p_3^{a_3}p_4^{a_4}\) với \(a_1,a_2,a_3,a_4\) là các số tự nhiên.
Theo nguyên lí Dirichlet, tồn tại 9 số có hệ số \(a_1\) cùng tính chẵn, lẻ.
Trong 9 số này, tồn tại 5 số có hệ số \(a_2\) cùng tính chẵn, lẻ.
Trong 5 số này, tồn tại 3 số có hệ số \(a_3\) cùng tính chẵn, lẻ.
Trong 3 số này, tồn tại 2 số có hệ số \(a_4\) cùng tính chẵn, lẻ. Tích hai số này là số chính phương.