cho tam giác ABC cân ở A có điểm M trên cạnh BC. kẻ MD // AC và ME // AB(D thuộc AB, E thuộc AC .
a, chứng minh ADME là hình bình hành.(đã làm)
b, tam giác EMC là tam giác gì?
c, so sánh MD+ME với AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
b: Xét tứ giác ADME có
AD//ME
AE//DM
Do đó: ADME là hình bình hành
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
b: Xét ΔMEC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔMEC cân tại E