Chứng tỏ rằng vs mọi giá trị của n khác 0 ta luôn có:
5^n+3-2^n+3+2^n+1-5^n+2+2^nchia hết cho 10
Giải giúp mik bài này hộ vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt M là n^3 -9n^2+2n.
TH1 : n có dạng 2k => M chia hết cho 2 (bạn tự cm)
TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n
=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)
Xét n có dạng 3k => M chia hết cho 3
Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3
Tương tự bạn xét n =3k+2....
=> M chia hết cho 3 vs mọi n (2)
Từ (1) và (2) => M chia hết cho 6
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
chứng tỏ rằng vs mọi số tự nhiên n thì số
A=n^2 +3n + 3 ko chia hết cho 9
giúp mik vs
nhanh lên mọi ng
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)
+ xét a chia hết cho 3 (đpcm)
+ xét a chia 3 dư 1 => a = 3k + 1
=> a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3
+ xét a chia 3 dư 2 => a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3
vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b, đề không rõ lắm
Ta có: \(17^n;17^n+1;17^n+2\) là 3 số nguyên liên tiếp nên luôn có 1 số chia hết cho 3
\(\Rightarrow17^n\left(17^n+1\right)\left(17^n+2\right)⋮3\)
\(\Rightarrow\left(17^n+1\right)\left(17^n+2\right)⋮3\left(17^n⋮̸3\right)\)
=> A \(⋮3\left(ĐPCM\right)\)
a ) Xét các trường hợp :
n chia hết cho 3
n chia 3 dư 1
n chia 3 dư 2
Xét n chia hết cho 3
=> n^3 - n = 3k^3 - 3k nên luôn chia hết cho 3
Xét n chia 3 dư 1
=> n^3 - n = ( 3k+1 )^3 - ( 3k + 1 ) = 27k + 1 - 3k - 1 = 27k - 3k = ( 27 - 3 )k = 24k = ( 3 . 8 )k nên chia hết cho 3
Xét n chia 3 dư 2
=> n^3 - n = ( 3k + 2 )^3 - ( 3k + 2 ) = 27k + 8 - 3k - 2 = ( 27 - 3 )k + 6 = 24k + 6 = 3 ( 8k + 2 ) nên chia hết cho 3
Vậy n^3 - n luôn chia hết cho 3
b ) Tương tự
Đề là vầy đúng không bạn \(5^{n+3}-2^{n+3}+2^{n+1}-5^{n+2}+2^n\)
\(=\left(5^{n+3}-5^{n+2}\right)-\left(2^{n+3}-2^{n+1}-2^n\right)\)
\(=5^{n+2}\left(5-1\right)-2^n\left(2^3-2-1\right)\)
\(=5^{n+2}.4-2^n\left(8-2-1\right)\)
\(=5^{n+1}.2.2.5-2^{n-1}.2.5\)
\(=5^{n+1}.2.10-2^{n-1}.10\)
do \(5^{n+1}.2.10\)chia hết cho 10 với mọi n \
\(2^{n-1}.10\)chia hết cho 10 với mọi n
suy ra \(5^{n+1}.2.10-2^{n-1}.10\)chia hết cho 10 với mọi n
suy ra \(5^{n+3}-2^{n+3}+2^{n+1}-5^{n+2}+2^n\)chia hết cho 10 với mọi n