Cho nửa đường tròn đường kính BC =2R, điểm A chuyển động trên nửa đường tròn đó. Gọi H là hình chiếu của A trên BC . Gọi D,E theo thứ tự là hình chiếu của H trên AC và AB . Gọi I,K lần lượt là trung điểm của HB và HC . Xác định vị trí của A để tứ giác DEIK có diện tích lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn :>
Xét ΔABCΔABC có AO = OB = OC
⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy
⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o
Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)
⇒EH=AD⇒EH=AD
Theo HTL, ta có :
{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2
⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)Hình tự vẽ nha bạn :>
Xét ΔABCΔABC có AO = OB = OC
⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy
⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o
Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)
⇒EH=AD⇒EH=AD
Theo HTL, ta có :
{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2
⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)
a) Để DE lớn nhất thì AH lớn nhất
hay \(AH=\dfrac{BC}{2}\)
\(\Leftrightarrow\)ΔABC vuông cân tại A
hay điểm A là điểm chính giữa của (O)