bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(n=2k+1\)
\(\Rightarrow A=3^{2k+1}+1=3.9^k+1\)
Ta có: \(9^k\) chia cho 5 dư - 1 hoặc 1
\(\Rightarrow3.9^k\)chia 5 dư - 3 hoặc 3
\(\Rightarrow3.9^k+1\)chia 5 dư - 2 hoặc 4
\(\Rightarrow A\) không chia hết cho 5 nên A không chia hết cho \(10^{2016}\)
Xét \(n=2k\)
\(\Rightarrow A=3^{2k}+1=3^{2k}+1\)
Vì \(3^{2k}\)là số chính phương nên chia cho 4 dư 0 hoặc 1.
\(\Rightarrow A=3^{2k}+1\)chia cho 4 dư 1 hoặc 2.
\(\Rightarrow A\)không chia hết cho 4 nên A không chia hết cho \(10^{2016}\)
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ