ChoΔABCvuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho BM=CN gọi O là giao điểm của BN và CM. Tại A và M vẽ các đường thẳng vuông góc với BN cắt BC lần lượt tại D và E. Chứng minh rằng: D là trung điểm của CE
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
29 tháng 4 2019
Tự vẽ hình nha!
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
18 tháng 4 2023
a: AM+MC=AC
NA+NB=AB
mà AB=AC; AM=AN
nên MC=NB
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
10 tháng 4 2022
a: Xét ΔAEB có
EM là đường cao
EM là đường trung tuyến
Do đó: ΔAEB cân tại E