Bài 3.
a) Tìm hai số tự nhiên liên tiếp có tích bằng 1190.
b) Tìm ba số tự nhiên chẵn liên tiếp có tích bằng 4032.
c) Tìm ba số lẻ liên tiếp có tích bằng 15525
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 2 số tự nhiên liên tiếp đó là: \(n,n+1\left(n\in N\right)\)
\(\Rightarrow n\left(n+1\right)=650\)
\(\Rightarrow n^2+n-650=0\)
\(\Rightarrow\left(n+\dfrac{1}{2}\right)^2=\dfrac{2601}{4}\)
\(\Rightarrow n+\dfrac{1}{2}=\dfrac{51}{2}\)
\(\Rightarrow n=25\)
Vậy 2 số đó là 25,26
b) Gọi 3 số tự nhiên liên tiếp là: a, a+1, a+2 \(\left(a\in N\right)\)
Theo bài ra ta có: \(a\left(a+1\right)\left(a+2\right)=2184\)
\(\Leftrightarrow\)\(a\left(a+1\right)\left(a+2\right)-2184=0\)
\(\Leftrightarrow\)\(\left(a-12\right)\left(a^2+15a+182\right)=0\)
\(\Leftrightarrow\)\(a=12\)
Vậy 3 số tự nhiên liên tiếp đó là: 12, 13, 14
a, 13 , 14 , 15
b, Câu hỏi của Nguyễn Hoàng Tùng - Toán lớp 6 - Học toán với OnlineMath
a: Gọi hai só cần tìm là a,a+1
Theo đề, ta có: a(a+1)=630
\(\Leftrightarrow a^2+a-630=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-630\right)=2521\)
=>Không có hai số tự nhiên liên tiếp nào thỏa mãn đề bài
b: Gọi ba số tự nhiên liên tiếp là a;a+1;a+2
Theo đề, ta có:
\(a^3+3a^2+2a-2184=0\)
\(\Leftrightarrow a^3-12a^2+15a^2-180a+182a-2184=0\)
=>a=12
Vậy: Ba số cần tìm là 12;13;14
c: Gọi hai số liên tiếp là a,a+1
Theo đề,ta có: a(a+1)=756
\(\Leftrightarrow a^2+a-756=0\)
\(\Delta=1^2+4\cdot1\cdot756=3025\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-1-55}{2}=-\dfrac{56}{2}=-28\left(loại\right)\\a_2=\dfrac{-1+55}{2}=27\left(nhận\right)\end{matrix}\right.\)
Vậy: Hai số cần tìm là 27 và 28
a)
gọi 2 số tự nhiên liên tiếp là a và a+1
Tích của 2 số bằng 1190
=>a(a+1)=1190
=>a^2+a-1190=0
=>(a^2+a+1/4)-1/4-1190=0
=>(a+1/2)^2-4761/4=0
=>(a+1/2-69/2)(a+1/2+69/2)=0
=>(a-34)(a+35)=0
=>(a-34)=0 hoặc (a+35)=0
=>a=34 (thỏa mãn do thuộc N)
a=-35 (loại)
=>a+1=34+1=35
Vạy 2 số tự nhiên liên tiếp cần tìm là 34 và 35