K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=1+7+7^1+7^2+...+7^{101}\)

\(=\left(1+7\right)+7\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\cdot\left(1+7+...+7^{100}\right)⋮8\)

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

25 tháng 9 2015

1 + 7 + 72 + ... + 7101

= (1 + 7) + 72.(1 + 7) + ... + 7100.(1 + 7)

= 8 + 72.8 + ... + 7100.8

= 8.(1 + 72 + ... + 7100) chia hết cho 8

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

5 tháng 8 2019

\(B=1+7+7^2+7^3+7^4+...+7^{101}\)

\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)

\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)

\(B=8\left(1+7^2+7^4+...+7^{100}\right)\)

\(\text{Vì 8⋮8}\Rightarrow8\left(1+7^2+7^4+...+7^{100}\right)⋮8\)

\(\text{Hay B⋮8}\)

\(\text{Vậy B⋮8}\)

5 tháng 8 2019

\(B=1+7+7^2+7^3+7^4+...+7^{101}\)

\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)

\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

8 tháng 12 2014

a

M=(7+7^2)+(7^3+7^4)+...+(7^59+7^60)

  =7.(7+1)+7^3.(7+1)+...+7^59+(7+1)  

  =7.8+7^3.8+...+7^59+8

=>M chia hết cho8