Cho tam giác ABC cân tại A . Tia phân giác góc B cắt AC tại M , tia phân giác góc C cắt AB tại N . E là giao điểm của CN và BM .
a) CM : tam giác AMN cân
b) CM: MN//BC
c) CM : tam giác NEB = tam giác MEC
d) Gọi I là trung điểm của BC . CM : A,I,E thẳng hàng
a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)
\(\Rightarrow\) \(AB=AC\) hay \(\frac{1}{2}AB=\frac{1}{2}AC\) và \(BM\)và \(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)
\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)
Xét \(\Delta AMN\)có\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)
b)Có
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN//BC\left(dpcm\right)\)