giai phuong trinh
x+ \(\sqrt{4-x^2}\)=2+3x\(\sqrt{4-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?
Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)
BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)
\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)
\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)
\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)
\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)
\(\Leftrightarrow x(x+1)\leq 0\)
\(\Leftrightarrow -1\leq x\leq 0\)
Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)
\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)
Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại)
Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại)
Vậy Pt có nghiệm (1;-1)
Đặt \(x=a;\sqrt{4-x^2}=b\Rightarrow a^2+b^2=4\)
pt <=> \(b+a=2+3ab\Leftrightarrow a^2+2ab+b^2=4+12ab+9a^2b^2\)
<=> \(4+2ab=4+12ab+9a^2b^2\)