K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

A B C E H F D K M O N

MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)

=> góc FMB = góc ACB (đồng vị)

mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)

=> góc FMB = góc ABC 

xét tam giác BDM và tam giác MFB có : BM chung 

góc BDM = góc BFM = 90

=> tam giác BDM = tam giác MFB (ch-gn)

=> BD = FM (đn)       (1)

xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM  = 90

=> FHEM là hình chữ nhật  (dh)

=> FM = HE (tc)    và (1)

=> BD = HE       (2)

kẻ DO // AC 

=> góc BOD = góc ACB  (đồng vị)

góc ACB = góc ABC (cmt)

=> góc DBO = góc DOB  

=> tam giác DOB cân tại D (dh)

=> BD = DO    và (2)

=> DO = HE 

mà HE = CK (gt)

=> DO = CK       (3)

gọi DK cắt BC tại N

xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)

góc ODN = góc NKC do DO // AC (cách vẽ)    và (3)

=> tam giác DNO = tam giác KNE (g-c-g)

=> DN = NK (đn)

mà N nằm giữa D và K 

=> N là trung điểm của DK 

N thuộc BC 

=> BC đi qua trung điểm của DK

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

10 tháng 4 2016

a.Xét tam giác  ABM và ACM có: BM =MC ; góc ABM = góc ACM ; AB =AC 

                   --> tam giác ABM = tam giác ACM ( cgc)

b. Xét tam giác BHM và CKM có: BHM = CKM =90 độ ; BM =MC ; HBM = KCM 

                          --> tam giác BHM = CKM ( cạnh huyền - góc nhọn ) --> BH = CK ( 2 cạnh tương ứng )

c. Ta có : MK vuông góc AC , BP vuông góc  AC --> MK// BP --> góc KMC = góc PBC (đồng vị )

mà KMC = HMB  ( tam giác BHM = CKM ) --> góc PBC = HMB  --> tam giác IBM cân

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

20 tháng 2 2019

a, dễ tự làm 

b, xét tam giác CAB và tam giác DAB có : AB chung

AC = AD (gt)

góc CAB = góc DAB = 90

=> tam giác CAB = tam giác DAB (2cgv) 

=> góc CBA = góc DBA (đn)

xét tam giác AFB và tam giác AEB có : AB chung

góc AFB = góc AEB = 90

=>  tam giác AFB = tam giác AEB (ch - gn)

24 tháng 2 2020

a)Ta xét trong tam giác ABH có Góc H =90độ
=>BAHˆ+ABHˆ=90
mà BAHˆ+HACˆ=90=A^(gt)
=>ABHˆ=HACˆ
Xét tam giác BHA và Tam giác AIC có:
AB=AC(gt)
H^=AICˆ=90(gt)
ABHˆ=HACˆ(c/m trên)
=>Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn)
=>BH=AI(hai cạnh tương ứng)
b)Vì Tam giác BHA=Tam giác AIC(c/m trên)
=>IC=AH(hai cạnh tương ứng)
Xét trong tam giác vuông ABH có:
BH2+AH2=AB2
mà IC=AH
=>BH2+IC2=AB2(th này là D nằm giữa B và M)
Ta có thể c/m tiếp rằng D nằm giữa M và C thì ta vẫn c/m được Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn) và BH2+IC2=AC2=AB2
=>BH2+CI2 có giá trị ko đổi
c)Ta xét trong tam giác DAC có IC,AM là 2 đường cao và cắt nhau tại N(AM cũng là đường cao do là trung tuyến của tam giác cân xuất phát từ đỉnh và cũng chính là đường cao của đỉnh đó xuống cạnh đáy=>AM vuông góc với DC)
=>DN chính là đường cao còn lại=>DN vuông góc với AC(là cạnh đối diện đỉnh đó)
d)Ta dễ dàng tính được Tam giác DMN cân tại M=>DM=MN(dựa vào số đo của các góc và 1 số c/m trên)
Từ M kẻ đường thẳng ME vuông góc với AD còn MF vuông góc với IC,Ta dễ dàng c/m được tam giác MED=Tam giác MFN(cạnh huyền-góc nhọn)
=>ME=MF(là hai đường vuông góc tại điểm M gióng xuống hai cạnh của góc HICˆ)
Theo tính chất của đường phân giác(Điểm nằm trên đường phân giác của góc này thì cách đều hai cạnh tạo thành góc đó)=>IM là tia phân giác của HICˆ

A B M E F Hình minh họa

Chứng minh :
*) Vì △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
\(\Rightarrow AB=AC\left(\text{t/c t/g cân}\right)\)
Xét △MEB vuông tại E và △MFC vuông tại F có:
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △MEB = △MFC( ch - gn )
⇒ EM = FM ( tương ứng )
*)Xét △AEM vuông tại E và △AFM vuông tại F có :
EM = FM ( cmt )
AM - cạnh chung
⇒△AEM = △AFM ( ch - cgv )
⇒ AE = AF ( tương ứng )
*)Xét △AMB và △AMC có:
AB = AC ( cmt )
AM - cạnh chung
MB = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(\text{tương ứng}\right)\)
\(\widehat{AMB}+\widehat{AMC}=180^o\left(\text{kề bù}\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
⇒ AM ⊥ BC ⇒ AM ⊥ EF
*) Vì \(\left\{{}\begin{matrix}AM\perp EF\\AM\perp BC\end{matrix}\right.\) \(\Rightarrow EF\text{//}BC\) ( tính vuông góc đến song song )