Một xe du lịch và một xe khách cùng khởi hành từ địa điểm A đén địa điểm B. Vận tốc của xe du lịch là 60 km/h, vận tốc của xe khách là 50km/h. Khi xe khách đến B thì xe du lịch đã đến B trước 48 phút. Tính quãng đường từ A đến B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi $50$ phút thành $\frac{5}{6}$ (h)
Gọi vận tốc xe khách là $a$ km/h thì vận tốc xe du lịch là $a+20$ km/h
Nếu như coi quãng đường 2 xe đi là $AB$ thì:
Thời gian xe khách đi: $\frac{AB}{a}$ (h)
Thời gian xe du lịch đi $\frac{AB}{a+20}$ (h)
Theo bài ra: $\frac{AB}{a}-\frac{AB}{a+20}=\frac{5}{6}$
Nếu đề bài yêu cầu tính vận tốc xe, thì đến đây bạn thay giá trị $AB$ vào để tính ra $a$.
Gọi \(x,y\) là vận tốc của xe khách và xe du lịch \(\left(x,y>0\right)\left(km/h\right)\)
\(36p=0,6h\)
Theo đề bài, ta có hệ pt :
\(\left\{{}\begin{matrix}x+13=y\\\dfrac{156}{x}-\dfrac{156}{y}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-13\\-156x+156y=0,6\end{matrix}\right.\)
\(\)Bai có đúng số không ấy, chứ mình ra vô nghiệm \(;-;\)