Cho tam giác ABC có góc A=60 độ, góc B=90 độ. Trên tia BA lấy điểm D sao cho BD=BC. Phân giác của góc B cắt AC,DC lần lượt ở E và I
a) Tính số đo góc ACB
b) Chứng minh EC=ED
c) Vẽ AH vuông góc DC (H thuộc DC). Chứng minh AH song song DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác BED và tam giác BEC có:
BE chung
góc B1= góc B2
BC=BD
=> tam giác BED = tam giác BEC (c.g.c)
Xét tam giác BDI và tam giác BCI có:
BI chung
góc B1= góc B2
BD=BC
=> tam giác BDI = tam giác BCI (c.g.c)
=> DI=CI
b,Vì BD=BC => tam giác BDC cân tại B
Mà BI là tia phân giác góc B
=> BI đồng thời là đường cao
=> BI vuông góc với DC
Mà AH vuông góc với DC
=> BI//AH
Cm: a) Xét t/giác BED và t/giác BEC
có: BD = BC (gt)
\(\widehat{DBE}=\widehat{CBE}\)(gt)
BE : chung
=> t/giác BED = t/giác BEC (c.g.c)
Ta có: BD = BC (gt) => t.giác BCD cân
Mà BI là tia p/giác góc B của t/giác BCD
=> BI đồng thời là đường trung tuyến (t/c t/giác cân)
=> IC = ID
(phần này có thể xét 2 t/giác BID và t/giác BIC)
b) Ta có: t/giác BCD cân tại B
BI là tia p/giác của t/giác BCD
=> BI đồng thời là đường cao của t/giác (t/c của t/giác cân)
=> BI \(\perp\)DC
mà AH \(\perp\)DC
=> AH // BI (từ \(\perp\) đến //)
a) Xét ΔBED và ΔBEC có
BD=BC(gt)
\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))
BE chung
Do đó: ΔBED=ΔBEC(c-g-c)
Xét ΔBDI và ΔBCI có
BD=BC(gt)
\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))
BI chung
Do đó: ΔBDI=ΔBCI(c-g-c)
⇒ID=IC(hai cạnh tương ứng)
b) Sửa đề: Chứng minh AH//BI
Xét ΔBDC có BD=BC(gt)
nên ΔBDC cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBDC cân tại B(cmt)
mà BI là đường phân giác ứng với cạnh đáy DC(gt)
nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)
⇒BI⊥DC
Ta có: AH⊥DC(gt)
BI⊥DC(cmt)
Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)
xét\(\Delta\)DBE và \(\Delta\)CBE có:
DB=CB(gt)
\(\widehat{DBE}\)=\(\widehat{CDE}\)(GT)
BE là cạnh chung
=>\(\Delta\)DBE=\(\Delta\)CBE(c.g.c)
xét \(\Delta\)DBI và \(\Delta\)CBI có
DB=CB(GT)
\(\widehat{DBI}\)=\(\widehat{CBI}\)(GT)
BI cạnh chung
=>\(\Delta\)DBI=\(\Delta\)CBI(cgc)
=>IC=ID(2 cạnh tương ứng)
MÌNH TÁCH AH VÀ BI RA ĐỂ NHÌN CHO RÕ NHÁ!
Ke thêm 2 đường thang TF VÀ GS căt nhau tai o sao cho GO=SO;TO=FO
GO=SO(GT)
\(\widehat{GOF}\)=\(\widehat{SOT}\)(Đối đỉnh)
TO=FO(GT)
=>\(\Delta\)GFO=\(\Delta\)SOT(cgc)
=>\(\widehat{G}\)=\(\widehat{S}\)(2 GÓC TƯƠNG ỨNG)
Do đó AH // BI
MINH LÀM BAI NÀY GIUP BẠN K0 BÍT ĐUNG HAY SAI MÀ MINH BỊ MAT NGỦ LUÔN ĐÓ!!!!!!!!!
a) Cách 1: Xét tgiac BDC có BD = BC => Tgiac BDC cân tại B
Mà BI là pgiac của góc B => BI là trung tuyến của CD => ID = IC (đpcm)
Nếu chưa đc học cách 1 thì làm cách 2:
Xét tgiac BID và BIC có:
+ BI chung
+ góc DBI = CBI
+ BD = BC
=> Tgiac BID = BIC (c-g-c)
=> đpcm
b) Xét tgiac BED và BEC có:
+ BD = BC
+ góc DBE = CBE
+ BE chung
=> Tgiac BED = BEC (c-g-c)
=> đpcm
c) Nếu trên câu a đã dùng cách 2:
Tgiac BID = CID (cmt) => góc BID = CID
Mà hai góc này kề bù => góc BID = 90 độ => BI vuông góc CD
Mà AH vuông góc CD
=> AH song song với BI (đpcm)
Nếu trên câu a dùng cách 1: BI còn là đường cao của tgiac BDC cân tại B
=> BI vuông góc CD
....
a) Trong \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
Hay \(60^o+90^o+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ACB}=180^o-\left(60^o+90^o\right)\)
\(\Rightarrow\widehat{ACB}=30^o\)
b) Xét \(\Delta DBE\)và \(\Delta CBE\)có:
\(BD=BC\left(gt\right)\)
\(\widehat{DBE}=\widehat{CBE}\left(gt\right)\)
\(BE\)là cạnh chung
Do đó: \(\Delta DBE=\Delta CBE\left(c.g.c\right)\)
\(\Rightarrow EC=ED\)(2 cạnh tương ứng)