Cho ΔABC. Từ D trên cạnh AB, kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF=DB. Gọi M là giao điểm của DF và BC. Chứng minh \(\dfrac{DM}{MF}\)=\(\dfrac{AC}{AB}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
JS
10 tháng 2 2020
Áp dụng định lý Ta-lét vào tam giác DEF ( CM // DE ) ta được :
MD/MF = CE/CF ( 1 )
Áp dụng định lý Ta-lét vào tam giác ABC ( DE // BC ) ta được :
AB/BD = CA/EC
=> CE/BD = AC/AB
Mà BD = CF ( GT )
=> CE/CF= AC/AB ( 2 )
Từ (1), (2), ta được :
MD/MF = AC/AB (đpcm)
Vậy: MD/MF = AC/AB
27 tháng 4 2018
a) Tam giác ABC có DE//BC nên theo định lý Ta-lét: BD/CE = AB/AC
b) Tam giác DEF có MC//DE nên theo định lý Ta-lét: MD/MF = EC/CF = EC/BD = AC/AB
bạn tự vẽ hình nhaa
\(\Delta DEF\) có MC//DE(gt)
\(\Rightarrow\frac{DM}{MF}=\frac{EC}{CF}\) ( theo định lý Ta-lét)
Mà CF=DB
nên \(\frac{DM}{MF}=\frac{EC}{DB}\)(1)
\(\Delta ABC\) có DE//BC
nên \(\frac{EC}{DB}=\frac{AC}{AB}\)(2)
từ (1) và (2) suy ra đpcm