Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng. Lấy các điểm E trên đoạn thẳng AD, F trên đoạn thẳng BC sao cho AE=BF
a) chứng minh tam giác AOD= tam giác BOC.
b) chứng minh góc AOE= góc BOF.
c) chứng minh : ba điểm E,O,F thẳng hàng.
a, Xét \(\Delta AOD\) và \(\Delta BOC\) có:
\(OA=OB\)
\(\widehat{AOD}=\widehat{BOC}\) \(\text{(đối đỉnh)}\)
\(OC=OD\)
\(\Rightarrow\Delta AOD=\Delta BOC\) \(\left(c-g-c\right)\)
\(\Rightarrow\widehat{D}=\widehat{C}\Rightarrow AD//BC\)
b, Từ câu a, ta có:
\(AD//BC\Rightarrow\widehat{A}=\widehat{B}\) \(\text{(cặp góc so le trong)}\)
Xét \(\Delta AOE\) và \(\Delta BOF\) có:
\(OA=OB\)
\(\widehat{A}=\widehat{B}\)
\(AE=BF\)
\(\Rightarrow\Delta AOE=\Delta BOF\left(c-g-c\right)\)
\(\widehat{AOE}=\widehat{BOF}\)