cho ∆deg vuông tại D gọi H là trung điểm eg kẻ hk vuông góc de tại R A chứng minh hk là đường trung bình của tam giác ∆deg B cho de= 9 eg= 15 tính dg và hk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, trên tia đối của tia MA lấy O sao cho MO=MA
=> t. giác BMO=t.giác CMA(c.g.c)
=> BO=CA mà CA=AE => BO=AE(*) ; \(\widehat{MAC}\)=\(\widehat{O}\)
Ta có: \(\widehat{ABO}\)+ \(\widehat{BAO}\)+ \(\widehat{O}\)= 180 độ
=> \(\widehat{ABO}\)+ \(\widehat{BAO}\)+\(\widehat{MAC}\)=180 độ
=> \(\widehat{ABO}\)+\(\widehat{A}\)=180 độ
do \(\widehat{DAE}\)+\(\widehat{A}\)=180 độ
=> \(\widehat{ABO}\)=\(\widehat{DAE}\)(**)
xét t.giác ABO và t.giác DAE có:
BO=AE
\(\widehat{ABO}\)=\(\widehat{DAE}\)
AB=AE(gt)
=> t.giác ABO=t.giác DAE(c.g.c)
=> \(\widehat{BAO}\)=\(\widehat{ADE}\)mà \(\widehat{BAO}\)+\(\widehat{DAI}\)=90 độ => \(\widehat{ADE}\)+\(\widehat{DAI}\)=90 độ
=> \(\widehat{DIA}\)=90 độ=> AI\(\perp\)DE
b)từ D kẻ DP\(\perp\)AH; từ E kẻ EQ\(\perp\)AH
ta có: t.giác AHB=t.giác DPA(CH-GN)=> DP=AH(1)
t.giác AEQ=t.giác CAH(CH-GN)=> QE=AH(2)
từ (1) và (2) suy ra DP=QE
xét 2 tam giác vuông PKD và QKE có:
DP=QE(cmt)
\(\widehat{PDK}\)=\(\widehat{KEQ}\)(vì so le)
=> t.giác PKD=t.giác QKE(cạnh góc vuông-góc nhọn kề)
=> KD=KE(2 cạnh tương ứng)
a: Xét ΔDEG có
H là trung điểm của EG
HK//DG
Do đó: K là trung điểm của DE
Xét ΔDEG có
H là trung điểm của EG
K là trung điểm của DE
Do đó: HK là đường trung bình của ΔDEG