(n+3).(n+7).(n+8) chia hết cho 6 với mọi n thuộc N giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)
n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)
=> 1 trong 3 số trên chia hết cho 2
=> A chia hết cho 2 (2)
Từ (1) => một trong 3 số trên chia hết cho 3
=> A chia hết cho 3 (3)
2 và 3 là 2 số nguyên tố cùng nhau (4)
Từ (2); (3); (4) => A chia hết cho 6 (đpcm)
n3 - n
= n(n2 - 1) = n(n2 - 12)
= n(n - 1)(n + 1)
Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)
=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Tích của chúng chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (Đpcm)
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
\(7^{n+4}-7^n\)
\(\Rightarrow7^n\cdot7^4-7^n\)
\(\Rightarrow7^n\cdot\left(7^4-1\right)\)
\(\Rightarrow7^n\cdot\left(2401-1\right)\)
\(\Rightarrow7^n\cdot2400\)
\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)
\(3^{n+2}+3^n\)
\(\Rightarrow3^n\cdot3^2+3^n\)
\(\Rightarrow3^n\cdot\left(3^2+1\right)\)
\(\Rightarrow3^n\cdot\left(9+1\right)\)
\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)
+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3
=> (4n + 3)2 chia 3 dư 1 (1)
+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)2 chia 8 dư 1 (2)
Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1
Mà 25 chia 24 dư 1
=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)
\(n+7;n+8\) là 2 số tự nhiên liên tiếp \(\Rightarrow\)\(\left(n+3\right)\left(n+7\right)\left(n+8\right)⋮2\) \(\left(1\right)\)
Có \(\left(n+3\right)\left(n+7\right)\left(n+8\right)=\left[\left(n+9\right)-6\right]\left(n+7\right)\left(n+8\right)\)
\(=\left(n+7\right)\left(n+8\right)\left(n+9\right)-6\left(n+7\right)\left(n+8\right)\)
Xét :
\(n+7;n+8;n+9\) là 3 số tự nhiên liên tiếp \(\Rightarrow\)\(\left(n+7\right)\left(n+8\right)\left(n+9\right)⋮3\)
\(6\left(n+7\right)\left(n+8\right)=3.2\left(n+7\right)\left(n+8\right)⋮3\)\(\Rightarrow\)\(6\left(n+7\right)\left(n+8\right)⋮3\)
\(\Rightarrow\)\(\left(n+7\right)\left(n+8\right)\left(n+9\right)-6\left(n+7\right)\left(n+8\right)=\left(n+3\right)\left(n+7\right)\left(n+8\right)⋮3\) \(\left(2\right)\)
Từ (1) và (2) suy ra đpcm
...