K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

đây là đáp án

28 tháng 12 2017

1 tháng 9 2018

25 tháng 1 2017

22 tháng 12 2018

Chọn D

Đặt t = -sinx + 2   Xét hàm số y = f(t) với  từ đồ thị đã cho, ta có:

18 tháng 6 2019

Chọn đáp án A.

3 tháng 1 2021

Đặt y= f(x) = \(x^2-2\left(m+\dfrac{1}{m}\right)x+m\)

Hoành độ đỉnh của đồ thị hàm số x=\(m+\dfrac{1}{m}\ge2\) (BĐT co-si)

vì hệ số a =1>0 nên hàm số nghịch biến trên \(\left(-\infty;m+\dfrac{1}{m}\right)\)

Suy ra, hàm số nghịch biến trên \(\left[-1;1\right]\)

=> y1 = f(-1) = \(3m+\dfrac{2}{m}+1\)

y2 = f(1)=\(1-m-\dfrac{2}{m}\)

theo đề bài ta có : y1-y2=8 <=> \(3m+\dfrac{2}{m}+1-1+m+\dfrac{2}{m}=8\left(m>0\right)\)

<=> \(m^2-2m+1=0\)

<=> m=1

3 tháng 1 2021

hệ số a = 1>0 tui tưởng nó nên làm hàm đồng biến chứ :D

18 tháng 8 2017