Gọi M, m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = x(2017 +\(\sqrt{2019-x^2}\)) trên tập xác định của nó . Tính M-m
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
22 tháng 12 2018
Chọn D
Đặt t = -sinx + 2 vì Xét hàm số y = f(t) với từ đồ thị đã cho, ta có:
3 tháng 1 2021
Đặt y= f(x) = \(x^2-2\left(m+\dfrac{1}{m}\right)x+m\)
Hoành độ đỉnh của đồ thị hàm số x=\(m+\dfrac{1}{m}\ge2\) (BĐT co-si)
vì hệ số a =1>0 nên hàm số nghịch biến trên \(\left(-\infty;m+\dfrac{1}{m}\right)\)
Suy ra, hàm số nghịch biến trên \(\left[-1;1\right]\)
=> y1 = f(-1) = \(3m+\dfrac{2}{m}+1\)
y2 = f(1)=\(1-m-\dfrac{2}{m}\)
theo đề bài ta có : y1-y2=8 <=> \(3m+\dfrac{2}{m}+1-1+m+\dfrac{2}{m}=8\left(m>0\right)\)
<=> \(m^2-2m+1=0\)
<=> m=1
đây là đáp án