Tim x biet 1+1/2(1+2)+1/3(1+2+3)+...+1/x(1+2+3+...+x)=115
Giup toi voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{3}-\frac{1}{3}:\left(1-x\cdot\frac{1}{3}\right)=\frac{7}{6}\)
=> \(\frac{1}{3}:\left(1-x\cdot\frac{1}{3}\right)=\frac{5}{3}-\frac{7}{6}\)
=> \(\frac{1}{3}:\left(1-x\cdot\frac{1}{3}\right)=\frac{1}{2}\)
=> \(\left(1-x\cdot\frac{1}{3}\right)=\frac{1}{3}:\frac{1}{2}=\frac{1}{3}\cdot2=\frac{2}{3}\)
=> \(1-\frac{x}{3}=\frac{2}{3}\)
=> \(\frac{x}{3}=1-\frac{2}{3}=\frac{1}{3}\)
=> x = 1
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)-\frac{1}{4}=\frac{1}{2}\)
=> \(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
=> \(x:\frac{1}{2}+\frac{3}{2}=3-\frac{3}{4}=\frac{9}{4}\)
=> \(x:\frac{1}{2}=\frac{9}{4}-\frac{3}{2}\)
=> \(x:\frac{1}{2}=\frac{3}{4}\)
=> \(x=\frac{3}{4}\cdot\frac{1}{2}=\frac{3}{8}\)
\(\frac{5}{3}-\frac{1}{3}:\left(1-x\times\frac{1}{3}\right)=\frac{7}{6}\)
\(\frac{1}{3}:\left(1-x\times\frac{1}{3}\right)=\frac{5}{3}-\frac{7}{6}\)
\(\frac{1}{3}:\left(1-x\times\frac{1}{3}\right)=\frac{1}{2}\)
\(1-x\times\frac{1}{3}=\frac{1}{3}:\frac{1}{2}\)
\(1-x\times\frac{1}{3}=\frac{2}{3}\)
\(x\times\frac{1}{3}=1-\frac{2}{3}\)
\(x\times\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}:\frac{1}{3}\)
\(x=1\)
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)-\frac{1}{4}=\frac{1}{2}\)
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)=\frac{1}{2}+\frac{1}{4}\)
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)=\frac{3}{4}\)
\(x:\frac{1}{2}+\frac{3}{2}=3-\frac{3}{4}\)
\(x:\frac{1}{2}+\frac{3}{2}=\frac{9}{4}\)
\(x:\frac{1}{2}=\frac{9}{4}-\frac{3}{2}\)
\(x:\frac{1}{2}=\frac{3}{4}\)
\(x=\frac{3}{4}\times\frac{1}{2}\)
\(x=\frac{3}{8}\)
\(∘backwin\)
\(a ) ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750\)
\( ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750 \)
\( 100 x + ( 1 + 100 ) ×100 : 2 = 5750\)
\(100 x + 5050 = 5750\)
\( 100 x = 5750 − 5050\)
\(100 x = 700\)
\(x = 700 : 100\)
\(x = 7\)
\(b,\) \(B=\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020}+2021\)
\( B < 1 -\)\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(B<1-\)\(\dfrac{1}{2021}\)
\(B<\)\(\dfrac{2020}{2021}\)
\(\dfrac{2020}{2021}< 1\)
\(B<1\)
a) (x+1) +(x+2 ) + ...+(x+100)=5750
= 100x + (1+2+3+...+100) = 5750
=100x + 5050 = 5750
--> 100x = 5750-5050=700
--> x=7
mình chỉ có thể giúp bạn hai câu đầu thôi thông cảm nha
( ko có dấu gạch nên ghi là "gạch " )
gạch x + 1 gạch = 2^3 - 1
gạch x + 1 gạch = 8 - 1
gạch x + 1 gạch = 7
x + 1 = 7 hoặc x + 1 = - 7
x = 7 - 1 hoặc x = ( -7 ) - 1
x = 6 hoặc x = - 8
Vậy x = 6 hoặc x = - 8
gạch 2 - x gạch = 5
2 - x = 5 hoặc 2 - x = - 5
x = 2 - 5 hoặc x = 2 - ( -5 )
x = ( -3 ) hoặc x = 7
Vậy x = ( -3 ) hoặc x = 7
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)=115\)
\(\Rightarrow1.\left(\frac{1.2}{2}\right)+\frac{1}{2}.\left(\frac{2.3}{2}\right)+\frac{1}{3}.\left(\frac{3.4}{2}\right)+....+\frac{1}{x}.\left[\frac{x\left(x+1\right)}{2}\right]=115\)
\(\Rightarrow\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{x+1}{2}=115\Rightarrow2+3+...+\left(x+1\right)=230\)
\(\frac{\Rightarrow\left[\frac{\left(x+1-2\right)}{1}+1\right].\left(x+1+2\right)}{2}=\frac{x.\left(x+3\right)}{2}=230\Rightarrow x.\left(x+3\right)=460\)
vì x và x+3 là 2 số tự nhiên cách nhau 3 đơn vị => \(x.\left(x+3\right)=460=20.23\Rightarrow x=20\)
Vậy x=20
Mik ko hieu giai ki hon dc ko