K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

=> (2x-y).3=(x+y).2

=> 6x-3y=2x+2y

=> 6x-2x=2y+3y

=> 4x=5y

=> \(\frac{x}{y}=\frac{5}{4}\)

1 tháng 8 2020

Bài làm

Áp dụng tính chất dãy tỉ số bằng nhau, có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x-y}{7-13}=\frac{42}{-6}=-7\)

Do đó:

\(\hept{\begin{cases}\frac{x}{7}=-y\\\frac{y}{13}=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-49\\y=-91\end{cases}}\)

Vậy x = -49; y = -91 

1 tháng 8 2020

Đặt \(\frac{x}{7}=\frac{y}{13}=k\)

=> x = 7k,y = 13k

=> x - y = 7k - 13k

=> x - y = -6k

=> 42 = -6k

=> k = -7

Vậy x = 7.(-7) = -49 , y = 13.(-7) = -91

10 tháng 12 2015

a. Theo t/c dãy tỉ số = nhau:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)

=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)

=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)

Vậy x=12; y=30.

b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)

=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)

=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)

+) x-0,25=2,5

=> x=2,5+0,25

=> x=2,75

+) x-0,25=-2,5

=> x=-2,5+0,25

=> x=-2,25

Vậy x \(\in\){-2,25; 2,75}.

c. y=kx

=> -17=k.8

=> k=-17/8

Vậy hệ số tỉ lệ là -17/8.

10 tháng 12 2015

a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)

=> x=12   ;   y = 30

b)  \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)

=> x-0,25 = 2,5    hoac:  -2,5

=> x = 2,75      hoac x= -2,25

Vay: x la { 2,75  ;   -2,25 }

c) Ti le gi vay ban.

Neu thuan thi he so ti le la: \(-\frac{17}{8}\)

Neu nghich thi he so ti le la : -136

12 tháng 8 2016

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/

16 tháng 4 2019

đã có lời giải đâu

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927