Tìm x thuộc N sao cho
a,(2x+1)chia hết cho (17-3x) với x<6
b,(x2+2x+7) chia hết cho (x+2)
c,(6x+9)chia hết cho (x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
10 chia hết chp x+2
<=> \(x+2\inƯ_{10}\)
<=> \(x+2\in\left\{1;2;5;10\right\}\)
<=> \(x+2\in\left\{-1;0;3;8\right\}\)
Vậy \(x+2\in\left\{-1;0;3;8\right\}\)
b)
21 chia hết cho 2x + 5
\(\Leftrightarrow2x+5\in\left\{1;3;7;21\right\}\)
\(\Leftrightarrow2x+5\in\left\{-2;-1;1;8\right\}\)
Vậy ....
c) 18 chia hết cho x - 3
\(\Leftrightarrow x-3\in\left\{1;2;3;6;9;18\right\}\)
\(\Leftrightarrow x\in\left\{4;5;6;9;11;121\right\}\)
Vậy .........
d)
5x + 3 chia hết cho 3x + 2
<=> 3(5x + 3 ) - 5(3x+2) chia hết cho 3x + 2
<=> 15x + 9 - 15x - 10 chia hết cho 3x + 2
<=> - 1 chia hết cho 3x + 2
<=> 1 chia hết cho 3x + 2
<=> x = - 1
Vậy ....
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
b) \(3x+9=3x+6+3=3\left(x+2\right)+3⋮\left(x+2\right)\Leftrightarrow3⋮\left(x+2\right)\)
\(\Leftrightarrow x+2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow x\in\left\{-5,-3,-1,1\right\}\).
a), c) tương tự.
d) \(\left(2x+1\right)⋮\left(3x-1\right)\Rightarrow3\left(2x+1\right)=6x+3=6x-2+5=2\left(3x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\Leftrightarrow3x-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{0,2\right\}\)(vì \(x\)nguyên)
Thử lại đều thỏa mãn.
Tìm x thuộc N :
a) 2x + 1 chia hết cho x + 2
b) 5x + 2 chia hết cho x + 1
c) 3x + 1 chia hết cho 2x + 1
a) Ta có: \(2x+1=\left(2x+4\right)-3=2.\left(x+2\right)-3\)
- Để \(2x+1⋮x+2\)\(\Leftrightarrow\)\(2.\left(x+2\right)-3⋮x+2\)mà \(2.\left(x+2\right)⋮x+2\)
\(\Rightarrow\)\(3⋮x+2\)\(\Rightarrow\)\(x+2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x+2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(-3\) | \(-1\) | \(-5\) | \(1\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-5,-3,-1,1\right\}\)
b) Ta có: \(5x+2=\left(5x+5\right)-3=5.\left(x+1\right)-3\)
- Để \(5x+2⋮x+1\)\(\Leftrightarrow\)\(5.\left(x+1\right)-3⋮x+1\)mà \(5.\left(x+1\right)⋮x+1\)
\(\Rightarrow\)\(3⋮x+1\)\(\Rightarrow\)\(x+1\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(-2\) | \(0\) | \(-4\) | \(2\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4,-2,0,2\right\}\)
c) Để \(3x+1⋮2x+1\)\(\Leftrightarrow\)\(2.\left(3x+1\right)⋮2x+1\)
- Ta có: \(2.\left(3x+1\right)=6x+2=\left(6x+3\right)-1=3.\left(2x+1\right)-1\)
- Để \(2.\left(3x+1\right)⋮2x+1\)\(\Leftrightarrow\)\(3.\left(2x+1\right)-1⋮2x+1\)mà \(3.\left(2x+1\right)⋮2x+1\)
\(\Rightarrow\)\(1⋮2x+1\)\(\Rightarrow\)\(2x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(2x+1=1\)\(\Leftrightarrow\)\(2x=0\)\(\Leftrightarrow\)\(x=0\left(TM\right)\)
+ \(2x+1=-1\)\(\Leftrightarrow\)\(2x=-2\)\(\Leftrightarrow\)\(x=-1\left(TM\right)\)
Vậy \(x\in\left\{-1,0\right\}\)
Câu 1:
a) 2(x-3)-3(x-5)=4(3-x)-18
<=> 3x-6-3x+15-12+4x+18=0
<=> 4x+15=0
<=> 4x=-15
<=> x=-15/4
b) -2(2x-8)+3(4-2x)=-57-5(3x-7)
<=> -4x+16+12-6x+57+15x-35=0
<=> -5x+50=0
<=> -5x=-50
<=> x=10
c) 3|2x2-7|=33
<=> |2x2-7|=11
<=> \(\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\end{cases}\Leftrightarrow}x=\pm3}\)
d) có 9x+17=3(3x+2)+11
=> 11 chia hết cho 3x+2
=> 3x+2 thuộc Ư (11)={-11;-1;1;11}
ta có bảng
3x+2 | -11 | -1 | 1 | 11 |
x | -13/3 | -1 | -1/3 | 3 |
Câu 2:
xy-5x+y=17
<=> x(y-5)+(y-5)=12
<=> (y-5)(x+5)=12
=> y-5; x+5 \(\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
lập bảng tương tự câu 1
dai the mnih khong lam dau