K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn ghi lại đề đi bạn

16 tháng 12 2021

Để hai đường thẳng song song thì m+1=2021

hay m=2020

12 tháng 7 2017

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

Lời giải:

1.PT hoành độ giao điểm:

$x^2-mx-4=0(*)$ 

Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$

$\Leftrightarrow (x+1)(x-4)=0$

$\Rightarrow x=-1$ hoặc $x=4$

Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$

Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$

2.

$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$

Áp dụng định lý Viet:

$x_1+x_2=m$ và $x_1x_2=-4$

Khi đó:

$y_1^2+y_2^2=49$

$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$

$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$

$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$

$\Leftrightarrow m^2(m^2+8)+8m^2=17$

$\Leftrightarrow m^4+16m^2-17=0$

$\Leftrightarrow (m^2-1)(m^2+17)=0$

$\Rightarrow m^2=1$

$\Leftrightarrow m=\pm 1$

16 tháng 12 2021

2 đt trên cắt nhau <=> m-2 ≠ 5 <=> m ≠ 7

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số