Cho a,b,c,d\(\in\)N* ,a2+c2=1 và \(\frac{a^4}{b}+\frac{c^4}{d}=\frac{1}{b+d}\)CMR:
\(\frac{a^{2016}}{b^{1008}}+\frac{c^{2016}}{d^{1008}}=\frac{2}{\left(b+d\right)^{1008}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}x^2+y^2=1\\\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\end{cases}}\)
\(\Leftrightarrow b\left(a+b\right)x^4+a\left(a+b\right)y^4=ab\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow b^2x^4+a^2y^4-2abx^2y^2=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2016}}{a^{1008}}=\frac{y^{2016}}{b^{1008}}=\frac{1}{\left(a+b\right)^{1008}}\)
\(\Rightarrow\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{21008}}=\frac{2}{\left(a+b\right)^{1008}}\)
Em vào câu hỏi tương tự tham khảo:
Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)
Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)
<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)
<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)
<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)
<=> \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)
Khi đó: \(\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{1008}}=2\frac{x^{2016}}{a^{1008}}=\frac{2}{\left(a+b\right)^{1008}}\)
2. Đặt c + d = x
Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)
\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)
Câu 4:
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)
\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)
\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)
\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )
\(\Rightarrow a-b=0,b-c=0,a-c=0\)
Thay vào A ta tính được A = 0
bài này dễ vào TH 0,5 điểm trong bài thi
nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)
áp dụng t/c dãy t/s = nhau
\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)
biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé
casi phần áp dụng tc thì phải bằng (a^2016)^2017+(b^2016)^2017 chớ nhỉ bạn hỏi đáp
a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)
Từ (1) và (2) => đpcm
b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)
\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)
Từ (3) và (4) => đpcm
c, làm giống câu a
a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)
(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
a) Ta có:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\left[\left(\frac{2a+b}{a+b}-1\right)+\left(\frac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\frac{2c+d}{c+d}-1\right)+\left(\frac{2d+a}{d+a}-1\right)-1\right]=0\)
\(\Leftrightarrow\left(\frac{a}{a+b}+\frac{b}{b+c}-1\right)+\left(\frac{c}{c+d}+\frac{d}{d+a}-1\right)=0\)
\(\Leftrightarrow\left(\frac{a.\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}+\frac{b.\left(a+b\right)}{\left(a+b\right).\left(b+c\right)}-\frac{\left(a+b\right).\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{c.\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}+\frac{d.\left(c+d\right)}{\left(c+d\right).\left(d+a\right)}-\frac{\left(c+d\right).\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\left(\frac{ab+ac}{\left(a+b\right).\left(b+c\right)}+\frac{ab+b^2}{\left(a+b\right).\left(b+c\right)}-\frac{ab+ac+b^2+bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac}{\left(c+d\right).\left(d+a\right)}+\frac{cd+d^2}{\left(c+d\right).\left(d+a\right)}-\frac{cd+ac+d^2+ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\left(\frac{ab+ac+ab+b^2-ab-ac-b^2-bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac+cd+d^2-cd-ac-d^2-ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}+\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=-\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=\frac{ad-cd}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{b.\left(a-c\right)}{\left(a+b\right).\left(b+c\right)}=\frac{d.\left(a-c\right)}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{b}{\left(a+b\right).\left(b+c\right)}=\frac{d}{\left(c+d\right).\left(d+a\right)}\) (vì \(a;b;c;d\) là số nguyên dương).
\(\Leftrightarrow b\left(c+d\right).\left(d+a\right)=d\left(a+b\right).\left(b+c\right)\)
\(\Leftrightarrow\left(bc+bd\right).\left(d+a\right)=\left(ad+bd\right).\left(b+c\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow bd^2+abc=b^2d+acd\)
\(\Leftrightarrow bd^2-b^2d=acd-abc\)
\(\Leftrightarrow bd.\left(d-b\right)=ac.\left(d-b\right)\)
\(\Leftrightarrow bd.\left(d-b\right)-ac.\left(d-b\right)=0\)
\(\Leftrightarrow\left(d-b\right).\left(bd-ac\right)=0\)
Vì \(a;b;c;d\) là số nguyên dương.
\(\Rightarrow d-b>0\)
\(\Rightarrow d-b\ne0.\)
\(\Leftrightarrow bd-ac=0\)
\(\Leftrightarrow bd=ac.\)
Lại có:
\(A=abcd\)
\(\Rightarrow A=ac.bd\)
\(\Rightarrow A=ac.ac\)
\(\Rightarrow A=\left(ac\right)^2.\)
\(\Rightarrow A=abcd\) là số chính phương (đpcm).
Chúc bạn học tốt!